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Switzerland

‡ Present address: Department of Antibody

Discovery and Protein Engineering, MedImmune

Inc., 1 MedImmune Way, Gaithersburg,

MD 20878, USA.

Correspondence e-mail: mittl@bioc.uzh.ch,

caflisch@bioc.uzh.ch

Received 24 January 2011

Accepted 16 May 2011

PDB References: caspase-3–compound 1,

2xyg; caspase-3–compound 5, 2xyh;

caspase-3–compound 8, 2xyp.

Using a fragment-based docking procedure, several small-molecule inhibitors of

caspase-3 were identified and tested and the crystal structures of three inhibitor

complexes were determined. The crystal structures revealed that one inhibitor

(NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC

89167 and NSC 251810) bind only to the prime part of the substrate-binding site.

One of the major conformational changes observed in all three caspase-3–

inhibitor complexes is a rotation of the Tyr204 side chain, which blocks the S2

subsite. In addition, the structural variability of the residues shaping the S1–S4

as well as the S10 subsites supports an induced-fit mechanism for the binding of

the inhibitors in the active site. The high-resolution crystal structures reported

here provide novel insights into the architecture of the substrate-binding site,

which might be useful for the design of more potent caspase inhibitors.

1. Introduction

Caspases form a unique class of cysteine aspartate-specific proteases

according to their substrate specificities and biological functions

(Grütter, 2000; Fuentes-Prior & Salvesen, 2004). The inhibition of

caspases represents a highly promising avenue for intervention in a

number of conditions involving apoptosis-mediated cell and tissue

damage in acute and chronic diseases (O’Brien & Lee, 2004). Many

potent caspase inhibitors have been synthesized based on the struc-

tures of caspase peptide substrates. However, because of their

peptidyl structure most of these inhibitors do not possess sufficient

cell permeability to be considered as candidates for drug develop-

ment.

12 human caspases are known and they demonstrate a stringent

specificity for an aspartic acid residue in the P1 position. They use

their active-site thiol to cleave peptide/protein targets exclusively

C-terminal to an aspartic acid residue. Furthermore, caspases are

selective for residues in the S4 and S10 subsites (Ganesan, Jelakovic

et al., 2006; Ganesan, Mittl et al., 2006; Goode et al., 2005). Caspase

inhibitors typically contain an electrophilic group termed the

‘warhead’, which reacts with the nucleophilic active-site cysteine

residue. The most commonly used warheads are halomethyl ketones

and aldehydes. Coupled with the preferred tetrapeptide sequence,

they produce potent inhibitors. Recently, two new classes of aza-

peptides have been identified as specific warheads for caspases

(James et al., 2004; Ekici et al., 2006). Active caspases are (��)2

heterotetramers that can be described as homodimers of hetero-

dimeric subunits with two active sites located in close proximity to the

dimer interface (Wilson et al., 1994; Rotonda et al., 1996; Mittl et al.,

1997; MacCorkle et al., 1998; Watt et al., 1999; Schweizer et al., 2003;

Hardy et al., 2004; Fuentes-Prior & Salvesen, 2004; McCluggage et al.,

2006; Ganesan, Mittl et al., 2006). Thermodynamic analysis and NMR

experiments revealed that residues from the dimer interface are

critical for stabilizing the active-site loops (Piana et al., 2003; Keller et

al., 2009, 2010). To identify novel scaffolds for the design of caspase-

directed inhibitors, the active-site pocket of caspase-3 was probed

using a fragment-based docking procedure and identified compounds

were analyzed in vitro using biochemical and structural biology

techniques.
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2. Materials and methods

2.1. Computational screening

We used in silico screening to identify compounds containing

halomethyl ketone or aldehyde groups that can form a covalent bond

to the catalytic cysteine residue of caspases. The computational

approach used presumes three fragments for the placement of a

flexible ligand in the binding site. In fragment-based docking

approaches, rigid or almost rigid molecular fragments are auto-

matically placed in the binding site and used as anchors for guiding

the docking of the compounds from which they originate (Cecchini

et al., 2004). In brief, the first program of the docking suite, DAIM

(Decomposition and Identification of Molecules), decomposes a

ligand into substructures and prioritizes the resulting fragments

according to their suitability as anchor fragments for use in an initial

rigid docking procedure (Kolb & Caflisch, 2006). Fragments that form

highly favourable interactions with the protein upon binding consti-

tute the most suitable anchor fragments for fragment-based docking.

DAIM fingerprints, which include fields that consider size and func-

tional group features, are used for the selection of the most suitable

anchor fragments. Optimal positions and orientations for the small

to medium-sized fragments generated by DAIM are determined by

SEED (Solvation Energy for Exhaustive Docking; Majeux et al., 1999,

2001). This program identifies optimal positions and orientations of

small to medium-sized molecular fragments in the binding site of the

protein. The fragments are then docked exhaustively by placing each

fragment in several thousand different positions with multiple

orientations and the binding energy for each fragment pose is esti-

mated whenever severe clashes are not present. Polar fragments are

placed under the condition that at least one hydrogen bond is formed

to the protein. Apolar fragments are docked into hydrophobic

regions of the binding site. Binding energies are calculated as the sum

of van der Waals and electrostatic terms, taking into account the

interaction energies between the fragment and the protein as well as

desolvation energies. In the last step of the docking procedure, the

whole ligand molecule is docked flexibly into the binding pocket by

the program FFLD (Fast Flexible Ligand Docking; Budin et al., 2001;

Cecchini et al., 2004). This program uses a genetic algorithm for

modification of the torsion angles and applies an efficient scoring

function (Scarsi et al., 1999). The placement of the ligand in the

binding site is defined by the anchor points and a least-squares fitting

procedure, modifying only the conformation of the ligand. The

position and orientation of the ligand in the binding site are deter-

mined by the best binding modes of its fragments that were initially

docked by SEED. Since the ligand is not covalently linked to the

active site during the FFLD run, the program does not have to

account for formation of the covalent bond. For efficiency reasons,

the scoring function used in FFLD does not explicitly include

solvation and is based solely on van der Waals and hydrogen-bond

energy terms. Nevertheless, solvation effects are indirectly considered

by utilizing the best binding modes previously determined by SEED.

Poses with the most favourable FFLD energies are further minimized

in the rigid protein using the CHARMM22 force field (Accelrys Inc.)

and during this step the ligand is covalently linked to the active-site

cysteine of caspase-3.

In order to partially take into account protein flexibility induced by

ligand binding, the crystal structures of four different caspase-3–

inhibitor complexes (PDB entries 1cp3, 1nme, 1nmq and 1nms) were

used as templates for the docking experiments (Choong et al., 2002;

Mittl et al., 1997; Schweizer et al., 2003; Watt et al., 1999; Erlanson et

al., 2003). For the docking experiments the following 26 amino acids,

which are located within a cutoff radius of 5 Å from any ligand atom,

were selected as binding-site residues: Met61–Ser65, Ser120–Glu123,

Gln161–Cys163, Thr166, Tyr204–Ser209, Trp214, Ser249–Asp253 and

Phe256. The defined binding-site residues provide the anchor points

for SEED (Cecchini et al., 2004). All crystallographic water molecules

were removed from the protein structures. H atoms, considering

appropriate ionization states of both the acidic and basic amino-acid

residues, atom types and partial charges were assigned to the protein

targets and the ligands using the programs BABEL (Guha et al.,

2006), WITNOTP (A. Widmer, Novartis AG, Basel, Switzerland) and

a method based on the partial equalization of orbital electro-

negativity (No, Grant, Jhon et al., 1990; No, Grant & Scheraga, 1990).

All histidine residues, except the active-site His121, were considered

neutral. The crystal structures were then energy-minimized using

the CHARMM22 force field (Accelrys Inc.). During the refinement,

heavy atoms were fixed and the H atoms were kept flexible in order

to find suitable hydrogen positions. Subsequently, the covalently

bound ligands were removed from the protein structures and the

active-site Cys163 was ionized.

Filtering the Available Chemical Directory database (240 000

compounds), the National Cancer Institute (NCI) 3D database

(140 000 compounds) and the Cambridge Crystallographic Data

Centre database (250 000 compounds) yielded a total of about 7200

molecules containing halomethyl ketone or aldehyde groups. To

facilitate crystallization of caspase-3–inhibitor complexes, only the

irreversibly binding halomethyl ketones (about 650 compounds) were

used for flexible-ligand docking. Prior to screening the molecules

from the three different databases, a docking protocol was estab-

lished by docking four known halomethyl ketone inhibitors into the

active sites of the respective caspase-3 protein structure templates

(PDB entries 1cp3, 1nme, 1nmq and 1nms). In order to remove any

bias originating from the ligand conformation observed in the crystal

structures, the four ligands were minimized outside the active site

before starting the docking procedure. During the FFLD run the

fragment containing the electrophilic carbon was placed in the

vicinity of the active-site Cys163 to allow the formation of a covalent

bond to the protein. Nonetheless, the fragment was not fixed during

the flexible docking procedure. Each ligand was docked into the

active site of each of the four caspase-3 conformations and ten

genetic algorithm runs were performed for every docking experi-

ment. For each run, the ligand pose with the lowest FFLD energy was

post-processed by minimization using the CHARMM22 force field

(Accelrys Inc.), while keeping protein non-H atoms rigid. During this

post-processing step the ligands were linked covalently to the active-

site Cys163. Protein–ligand complexes were minimized by the

conjugate-gradient algorithm with an energy-convergence criterion

of 0.004 kJ mol�1 Å�1. In order to prevent artificial deviations

because of vacuum effects and to crudely approximate solvent effects,

the electrostatic energy term was screened by a distance-dependent

dielectric function (" = 4r, where r is the distance between partial

charges) and the default nonbonding cutoff of 14 Å was used during

the refinement. The accuracies of the redocking and cross-docking

experiments were assessed by calculating the root-mean-square

deviations (r.m.s.d.s) for all non-H ligand atoms between the docked

conformations and the conformations observed in the experimental

crystal structures. Only the best-scoring orientation from each

docking run was considered.

The 650 halomethyl ketone compounds were docked and post-

processed using the same protocol as described for the four known

ligands. Again, the protein coordinates of the four caspase structures

1cp3, 1nme, 1nms and 1nmq were used as templates for docking. The

halogen atoms of the halomethyl ketone groups of the molecules

retrieved from the databases were removed prior to docking. Ten
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genetic algorithm runs were performed for the docking of each ligand

into the active sites of the four caspase-3 structures. Compounds with

plausible poses were either obtained from the Drug Synthesis and

Chemistry Branch, the Developmental Therapeutics Program, NCI

or purchased from commercial suppliers and tested in an in vitro

activity assay for their inhibition potency.

2.2. Caspase purification

Human caspase-3 was produced in Escherichia coli as inclusion

bodies, refolded and purified as described previously (Garcia-Calvo

et al., 1999). Both subunits of caspase-3 were expressed separately

in E. coli BL21-CodonPlus(DE3)-RIL cells (Stratagene). Cultures

(500 ml) were grown to a density of A600 = 0.5 at 310 K in Luria–

Bertani medium. Expression was induced by the addition of IPTG

(1 mM) and the culture was shaken at 310 K for 4 h post-induction.

Cells were harvested, washed in PBS buffer and lysed using a French

press to retrieve the protein localized in the inclusion-body portion.

Refolding was achieved by rapid dilution of equimolar amounts of

each subunit to a final concentration of about 100 mg ml�1 per sub-

unit. The protein was purified by anion-exchange chromatography

(Resource-Q, GE Healthcare). Active caspase was further purified by

size-exclusion chromatography (Superdex S200, GE Healthcare).

2.3. Kinetic analysis

The inhibitory activities of the compounds were measured at

10 nM caspase-3 concentration. All compounds used for testing were

dissolved at 50 mM in DMSO prior to assay. Typically, the enzyme

was incubated with the compound at a concentration of 100 mM for

30 min at 310 K. The remaining caspase activity was measured by

following the increase in fluorescence using the substrate acetyl-

DEVD-7-amido-4-methylcoumarin. Caspase activity was determined

from the initial rate of hydrolysis by measuring the increase in

fluorescence at an excitation wavelength of 360 nm and an emission

wavelength of 460 nm for 15–30 min at 310 K using an HTS 7000 Plus

Bio Assay plate reader (Perkin Elmer). Both the enzyme and the

substrate were diluted in assay buffer consisting of 20 mM piper-

azine-N,N0-bis(2-ethanesulfonic acid) (PIPES) pH 7.2, 100 mM NaCl,

10 mM 1,4-dithiothreitol (DTT), 1 mM EDTA, 0.1%(w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)

and 10%(w/v) sucrose. The active caspase concentration was deter-

mined by active-site titration using the covalently binding inhibitor

benzyloxycarbonyl-DEVD-chloromethylketone. As a prerequisite

for the assay, the concentration of DMSO was less than 2% and the

substrate:enzyme ratio was at least 50:1. The assay volume was 100 ml

in a 96-well microtitre plate.

2.4. Crystallization and structure determination

For structural studies, the purified caspase-3 was inhibited with

a threefold molar excess of the inhibitor. Crystals of caspase-3–

inhibitor complexes were grown by mixing equal volumes of protein

solution (10 mg ml�1 in 20 mM Tris–HCl pH 8.0, 10 mM DTT) and

reservoir solution [0–15%(w/v) polyethylene glycol 6000, 100 mM

sodium citrate pH 5.0]. Crystallization conditions were similar to

previously reported conditions (Ganesan, Mittl et al., 2006). Prior to

data collection, crystals were frozen in a nitrogen stream after a short

soak in reservoir solution containing 20% glycerol. The crystals

belonged to space group I222. X-ray data for the protein–inhibitor 1

complex were collected at the Swiss Light Source synchrotron (Paul

Scherrer Institute, Villigen, Switzerland). Data processing was per-

formed with XDS (Kabsch, 2010). Diffraction data for the complexes

with the inhibitors 5 and 8 were collected using a rotating-anode

generator (Bruker Nonius FR591) at 100 K. Images were integrated

with MOSFLM and scaled with SCALA from the CCP4 suite of

programs (Winn et al., 2011). The structures were solved by the

difference Fourier technique. Model building was performed with

the program O (Jones et al., 1991) and structure refinement was

performed using CNS (Brünger et al., 1998). The topology and

parameter files for the energy-minimized inhibitor were generated
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Figure 1
Comparison of the redocked poses (green C atoms) with the corresponding
conformations observed in the known caspase-3–inhibitor structures (grey C
atoms) from PDB entries 1cp3 (a), 1nme (b), 1nmq (c) and 1nms (d).



using XPLO2D. Unit-cell parameters are as listed in Table 3. The

final crystallographic R and free R factors were in the ranges 17–18%

and 19–22%, respectively. The final models consisted of residues 29–

174 of the �-subunit and residues 186–277 of the �-subunit for all

three caspase-3–inhibitor complexes described here. The majority of

the molecular-graphics figures were prepared with PyMOL (DeLano,

2002), whereas Fig. 6 was prepared with Maestro (Schrödinger LLC,

New York, USA). Coordinates and structure-factor amplitudes for

the three caspase-3–inhibitor complexes have been deposited in the

PDB under the accession codes 2xyg (caspase-3–compound 1), 2xyh

(caspase-3–compound 5) and 2xyp (caspase-3–compound 8).

3. Results and discussion

Here, we present the identification and structural characterization

of small-molecule inhibitors binding to the substrate-binding site of

caspase-3 using an in silico screening approach. After validation of

the docking procedure by redocking and cross-docking of structurally

characterized caspase-3 inhibitors using the fragment-based docking

suite DAIM–SEED–FFLD (Kolb & Caflisch, 2006; Majeux et al.,

1999, 2001; Budin et al., 2001), a substructure search for halomethyl

ketone derivatives in three different databases was carried out.

The results of the redocking experiments, in which each of the four

ligands was docked back into its cocrystallized protein conformation

(PDB entries 1cp3, 1nme, 1nms and 1nmq), are shown in Fig. 1. The

redocked binding modes for all four ligands were very similar to the

experimentally observed binding modes. The r.m.s.d.s between the

crystallographic coordinates and the docked ligands were 0.5, 1.1, 1.2

and 1.4 Å for 1cp3, 1nme, 1nmq and 1nms, respectively.

Cross-docking, in which each ligand was docked into the same

protein but using a different crystal structure, was successful in six out

of 12 cases when considering an r.m.s.d. value of below 2.4 Å as a

successfully docked ligand conformation (Table 1; Fig. 2). The ligand

superpositions used for r.m.s.d. calculations were based on the

superimposed protein C� atoms. While the ligand from the crystal

structure 1nmq could be accurately redocked with an r.m.s.d. between

the experimental and modelled ligand of 1.2 Å, cross-docking of this

ligand failed in all three cases, perhaps because of the conformational

changes in the protein upon ligand binding. Moreover, the 1cp3

protein structure does not seem to accommodate the three cross-

docked inhibitors, which is probably a consequence of the different

inhibitor scaffolds. Structure 1cp3 contains a peptidic inhibitor,

whereas all other cross-docked inhibitors are clearly nonpeptidic

except for the P1 Asp.

The fact that docking of some ligands into the binding site of a

specific protein conformation can be difficult in some cases indicates

that different experimentally determined protein conformations

should be used in docking experiments, especially when the confor-

mation of active-site residues is altered upon ligand binding. In the

absence of experimentally determined structural variability, protein

conformations generated by Monte Carlo (Caflisch et al., 1997) or

molecular-dynamics (Ekonomiuk et al., 2009) simulations might be a

choice for sampling different conformations of the protein target.

Visual inspection of the best scored poses of our docking results

led to a subset of 27 compounds which were subsequently ordered

either from the NCI Open Chemical Repository or from other

commercial suppliers. Only 21 of these compounds could be obtained

commercially and were subsequently assayed for inhibitory activity

against caspase-3. Although all of these compounds showed some

inhibitory activity, eight showed more than 50% inhibition in the

caspase activity assay when tested at a concentration of 100 mM. The
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Table 1
Results of redocking (diagonal from top left to bottom right) and cross-docking
simulations of methyl ketone inhibitors containing an irreversible fluoromethyl
ketone (i1cp3) or arylacyloxymethyl ketone warhead (i1nme, i1nmq and i1nms).

R.m.s.d. values for non-H atoms between the docked conformation of most favourable
energy and the conformation from the crystal structure are given (in Å). The ligand
superpositions used for r.m.s.d. calculations are based on the superimposed protein C�

atoms. Ligand conformations with an r.m.s.d. value below 2.4 Å are considered as
successfully docked poses. The structures of the inhibitors are shown in Fig. 2.

1cp3 1nme 1nmq 1nms

i1cp3 0.5 1.0 2.2 4.0
i1nme 3.8 1.1 1.3 1.5
i1nmq 4.4 5.7 1.2 3.6
i1nms 3.9 1.4 1.1 1.4

Figure 2
Structures of i1cp3, i1nme, i1nmq and i1nms.

Table 2
Active-site-directed caspase-3 inhibitors.

The activity refers to the percentage activity remaining after incubation, as described in
x2.3. The structures of the inhibitors are shown in Fig. 3.

Compound NSC/CAS Nos. Activity (%)

1 NSC 89167, CAS 329-30-6 71
2 NSC 24873, CAS 1775-46-8 69
3 NSC 107152, CAS 10161-88-3 68
4 NSC 211621, CAS 19159-87-6 66
5 NSC 18508, CAS 60254-71-9 59
6 NSC 106024, CAS 10161-89-4 53
7 NSC 107443, CAS 37660-62-1 53
8 NSC 251810, CAS 26049-94-5 50



relative inhibition data for these compounds and their chemical

structures are given in Table 2 and Fig. 3, respectively.

All 21 identified inhibitors were screened for cocrystallization with

caspase-3. However, only compounds 1, 5 and 8 yielded crystals

suitable for X-ray structure determination. A summary of the crys-

tallographic data-processing and refinement statistics is given in

Table 3. The overall conformations of caspase-3 reported here are

very similar to the conformations of previously determined caspase-

3–inhibitor complexes (Mittl et al., 1997; Rotonda et al., 1996). The

halomethyl ketone warhead groups are covalently bound to the thiol

group of the active-site cysteine through a thioether bond. Com-

pound 5 mimics an aspartic acid coupled to a methylene chloride

moiety at the C-terminus. The binding mode is very similar to that

of inhibitors possessing a P1 aspartate moiety (Mittl et al., 1997;

Rotonda et al., 1996). This ligand occupies the S1 subsite and is

stabilized by ionic interactions with Arg64 and Arg207 as well as a

hydrogen-bond interaction with Gln161 (Fig. 4a). In the known

caspase-3–inhibitor structures there are two critical intermolecular

main chain–main chain interactions. One hydrogen bond is observed

between the P1 amide of the inhibitor and the backbone carbonyl

of the conserved Ser205, while a second hydrogen bond is formed

between the P3 carbonyl group and the main-chain amide group of

the conserved Arg207. The lack of the amide group in compound 5

and thus the missing hydrogen-bond interaction renders the methy-

lene C atoms of compound 5 very flexible, as indicated by high

B values. The carbonyl group of the inhibitor is stabilized by the

‘oxyanion hole’ formed by the amide groups of Cys163 and Gly122.

The inhibitor occupies the S1 subsite, thus leaving subsites S2–S4

unoccupied. As a consequence, the residues involved in shaping these
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Figure 3
Structures of active-site-directed caspase-3 inhibitors. (1) N-(4-chloro-3-oxo-1-phenyl-2-butyl)-4-methylbenzenesulfonamide; (2) 3,5-dibromo-4-oxopentanoate; (3) 4-{[4-(2-
bromoacetyl)anilino]methyl}benzoate; (4) 1-chloro-6-[3-(4,6-diamino-2,2-dimethyl-1,2-dihydro-1,3,5-triazin-1-yl)phenyl]hexan-2-one; (5) 5-chloro-4-oxopentanoate; (6) 4-
{[4-(4-chloro-3-oxobut-1-enyl)anilino]methyl}benzoate; (7) ethyl 4-[N-(4-bromo-3-oxobutyl)acetamido]benzoate; (8) benzyl N-(4-chloro-3-oxo-1-phenyl-2-butyl)carbamate.

Table 3
X-ray data-collection and refinement statistics of caspase-3–inhibitor crystal
structures.

Values in parentheses are for the highest resolution shell. All data were collected at
100 K.

Compound 1,
NSC 89167

Compound 8,
NSC 251810

Compound 5,
NSC 18508

Space group I222
Unit-cell parameters

a (Å) 68.7 69.5 68.5
b (Å) 83.5 83.7 83.5
c (Å) 96.1 95.8 95.8

Resolution range (Å) 20–1.57
(1.65–1.57)

20–1.86
(1.95–1.86)

20–1.89
(2.00–1.89)

No. of unique reflections 37129 (2840) 23519 (3379) 21032 (3029)
hI/�(I)i 30.5 (4.3) 27.8 (13.8) 21.1 (8.2)
Rmerge (%) 9.8 (22.0) 4.2 (10.6) 5.0 (16.9)
Completeness (%) 90.3 (88.4) 99.3 (98.5) 95.6 (94.5)
Multiplicity 7.1 (5.2) 5.1 (5.1) 4.4 (4.4)
Refinement

Resolution range (Å) 10–1.58
(1.60–1.58)

10–1.86
(1.90–1.86)

10–1.89
(1.93–1.89)

R factor (%) 17.9 (25.7) 16.7 (21.0) 17.7 (20.7)
Rfree (%) 19.7 (27.6) 20.4 (27.9) 21.6 (22.5)
No. of reflections

Used for refinement 35638 22609 20081
Used for calculation of Rfree 1491 920 820

R.m.s.d. bonds (Å) 0.007 0.007 0.007
R.m.s.d. angles (�) 1.445 1.411 1.411
Average B (Å2)

Protein 11.5 11.5 13.3
Ligand atoms 34.6 44.5 32.8
Water molecules 30.5 31.1 28.9

No. of atoms
Protein 1929 1929 1929
Ligand atoms 22 22 8
Water molecules 426 400 297



sites have different orientations compared with those observed in

other known structures (Mittl et al., 1997; Rotonda et al., 1996). One

significant change is observed for Tyr204, which rotates approxi-

mately 90� around �1 and occupies the S2 pocket, where it is

stabilized by hydrophobic contacts with Cys163, Trp206 and Phe256

(Fig. 4a).

In contrast to the mode of binding observed in the caspase-3–

compound 5 complex, compound 1 binds only in the prime site

of caspase-3. This unusual binding in the prime site renders the

substrate-binding subsites S1–S4 unoccupied. Apart from some

movements of the side-chain conformation of the residues forming

these subsites, a similar conformational change of Tyr204 as observed

in the case of the caspase-3–compound 5 complex was also observed

in this structure. Given the lack of the critical P1 Asp residue, the S1

subsite is occupied by a cluster of water molecules in the caspase-3–

compound 1 structure. As a consequence, the active-site Arg207 is

displaced by about 0.5 Å in comparison to the caspase-3–compound 5

complex and it adopts a slightly different side-chain orientation.

Compound 1 is covalently bound to the active-site cysteine residue

and its P1 carbonyl group is stabilized partly by the ‘oxyanion hole’

(the amide group of Gly122; Figs. 4b and 5a). The phenylalanine side

chain of the inhibitor covers the S10 subsite and is involved in

hydrophobic contacts with Met61 and Phe128, whereas the p-toluoyl

group is stabilized by the hydrophobic parts of the Thr166 and

Glu123 side chains. As usually observed in arylsulfonamide struc-

tures, the conformation of the N—C bond in the aryl-SO2-NH-C

segment adopts a gauche torsion with respect to one of the S O

bonds. The sulfone amide group forms water-mediated interactions

with the main-chain carbonyl groups of Gly122 and Gly165. There-

fore, the sulfone amide could presumably be replaced by other

groups linking the p-toluoyl and benzyl groups of the inhibitor.

The binding of the carbamic acid group in the structure of the

caspase-3–compound 8 complex is reminiscent of the binding of the

sulfone amide group of compound 1. However, the p-toluoyl and

benzyloxy groups of compounds 1 and 8, respectively, bind to

completely different regions of the active site. The benzyloxy group

of compound 8 is well placed in a deep hydrophobic cavity delineated

by Thr166, Leu168, Tyr204 and Phe256, while the phenylalanine side

chain is stabilized by hydrophobic contacts with Met61 and Phe128

(Figs. 4c and 5b). The carbonyl group of the inhibitor is stabilized by
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Figure 4
Stereoviews of the active site of caspase-3 (yellow C atoms) in complex with compounds 5, 1 and 8 (grey C atoms) in (a), (b) and (c), respectively. The structure of the
caspase-3–DVAD complex (green C atoms; PDB entry 1cp3) has been superimposed for comparison. A displacement of Tyr204 is observed in all three caspase-3–inhibitor
complexes reported here. The binding mode of the carboxylic acid group of compound 5 closely mimics the binding of the carboxylic acid of P1 Asp in known structures and
it is involved in ionic interactions with Arg64 and Arg207. Compounds 1 and 8 bind only in the prime site, leaving the S4–S1 sites unoccupied.



a short hydrogen bond to the amide group of Gly122 and a longer

hydrogen bond to the side chain of the catalytic His121. This is

in contrast to the interaction normally found in the structures of

caspase–halomethyl ketone inhibitor complexes and is analogous to

the interactions found in the case of caspase–aldehyde inhibitor

complexes.

As observed for compounds 1 and 5, a similar conformational

change of Tyr204 is observed for the caspase-3–compound 8 crystal

structure. As indicated in Fig. 4(c), movement of Tyr204 is warranted

to prevent potential steric clashes with one of the phenyl rings of

compound 8. Therefore, the conformation of Tyr204 reported for

most of the caspase-3–peptidic inhibitor complexes (Mittl et al., 1997;

Rotonda et al., 1996) is caused by the conformation of the P2 Val

residue of the inhibitor. Thus, the observed conformational changes

of the active-site residues Tyr204 and Arg207, in addition to the

prime-site residues Met61 and Phe128, provide a glimpse of the

adaptability and plasticity of the substrate-binding site.

The computed binding mode for compound 5 is essentially iden-

tical to the binding mode for this compound in the experimental

structure. In contrast, the computed binding modes for compounds 1

and 8 are very different from those observed crystallographically.

Fig. 6 shows a superposition of the X-ray structures and the computed

models of caspase-3 in complex with compound 1 (Fig. 6a) and

compound 8 (Fig. 6b), respectively. There are some prominent

differences in the side-chain conformations of active-site amino-acid

residues between the crystallographic structures and the protein

conformations used as templates for docking. These conformational

changes, as well as some crystallographic water molecules that are

important for the binding of compounds 1 and 8, might be responsible

for the observed discrepancies between the computed and experi-

mental binding modes.

In the X-ray structure of the caspase-3–compound 1 complex the

side chain of Tyr204 occupies the space where the benzyl moiety of

the modelled compound 1 binds (Fig. 6a). However, the corre-

sponding benzyl group of the ligand in the crystal structure binds to

a site that is occupied by the side chain of Met61 in the modelled

complex. Two water molecules seem to play an important role in the

crystallographically observed binding of compound 1. The carbonyl
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Figure 5
Surface representation illustrating the differences in the binding modes of caspase-
3 in complex with compounds 1 and 8 in (a) and (b), respectively. The unoccupied
S1 pocket is populated by water molecules (green spheres). Most of the hydrogen
bonds in the prime site are mediated by water molecules. The red and blue
rendering indicates negatively and positively charged regions, respectively.

Figure 6
Superposition of the X-ray structure (grey C atoms) and the computed model
(green C atoms) of caspase-3 in complex with compounds 1 and 8 in (a) and (b),
respectively. Ligands are shown in bold. The positions of some water molecules that
are involved in water-mediated contacts between the ligand and the protein in the
respective X-ray structures are shown as red spheres.



group forms water-mediated contacts to the main-chain carbonyl

group of Ser120 and to the backbone NH group of Cys163. Addi-

tionally, the sulfonyl group is stabilized by a water-mediated contact

to the main-chain carbonyl group of Gly122 and the NH group of

Gly165. The low temperature factors of the two water molecules

indicate that these water molecules are important for the binding of

compound 1. In the modelled complex the benzyl moiety of the

docked ligand is stabilized by aromatic and hydrophobic interactions

with residues Phe256, Tyr204 and Trp206. The carbonyl group forms

a hydrogen bond to the imidazole ring of His121. Furthermore, the

sulfonyl group binds to the guanidinium group of Arg207 and the

phenyl ring of the attached toluyl group seems to be stabilized by

cation–� interactions with Arg207 and forms hydrophobic contacts to

some other residues.

In the X-ray structure of the caspase-3–compound 8 complex the

benzyl group of the benzyloxycarbonyl group and the phenyl ring of

the phenylalanyl moiety of the ligand bind in sites that are occupied

by the side chains of Tyr204 and Met61 in the modelled complex,

respectively (Fig. 6b). Again, water molecules seem to be important

for ligand binding. The ketone O atom forms a water-mediated

hydrogen-bond network to the main-chain carbonyl group of Ser120,

the NH group of Cys163 and the imidazole group of His121. The

carbonyl group of the benzyloxycarbonyl moiety is also stabilized by

water-mediated contacts to the main-chain carbonyl group of Gly122

and the carboxylate group of Glu123. In contrast, the two phenyl

groups of the docked compound 8 are stabilized by hydrophobic

contacts to side-chain atoms of Tyr204, Trp206 and Phe256. More-

over, the carbonyl group of the benzyloxycarbonyl moiety seems to

form a hydrogen bond to the guanidinium group of Arg207.

In conclusion, ligand-induced conformational changes and a priori

non-obvious water-molecule positions might be an explanation of the

observed discrepancies between the computed and experimental

binding modes for compounds 1 and 8. The X-ray structures revealed

that some water molecules play an important role in the binding of

these two ligands. The incidence and positions of these water mole-

cules depend upon or can be induced by a particular ligand and

therefore cannot easily be accurately predicted. As previously indi-

cated, all crystallographic water molecules were removed from the

protein structures prior to docking. Furthermore, the water molecules

essential for the binding of ligands 1 and 8 were not conserved in any

of the four protein structures (PDB entries 1cp3, 1nme, 1nmq and

1nms) used as templates for the docking experiments. In the X-ray

structures of caspase-3 in complex with compounds 1 and 8 the

temperature factors of the ligand atoms are clearly higher than those

of the atoms of the surrounding protein amino-acid residues, indi-

cating that some of the ligand-binding interactions are not very

strong. The weakness of the binding is also reflected in the only

moderate inhibitory activities. In the X-ray structures of the four

caspase-3 structures used for the redocking and cross-docking

experiments no mediating water molecules were essential for ligand

binding. These experiments indicate that the docking procedure used

seems to give better results in predicting ligand-binding modes for

protein–ligand complexes in which water molecules do not play a

mediating role (Fig. 1 and Table 1); indeed, our validation experi-

ments demonstrated that redocking (which was successful in all four

experiments) worked clearly better than cross-docking (which was

successful in six of 12 cases). Therefore, ligand-induced conforma-

tional changes as well as the presence and location of water molecules

that are important for ligand binding seem to have a significant

influence on docking results.

Finally, the high-resolution crystal structures reported here could

be used for the design of more potent inhibitors. As an example, one

could design derivatives of compounds 1 and 8 which replace the

water-mediated hydrogen bonds (Fig. 5) by direct hydrogen-bonding

interactions with the protein.
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