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14.1 INTRODUCTION

Structural genomics programs around the world are delivering an abundance of three-
dimensional (3-D) structures of proteins, some of which are pharmacologically
highly relevant. Hence, computer programs for automatic docking of libraries of
compounds are being developed further and applied to design drugs against a
plethora of diseases including AIDS, Alzheimer’s disease, cancer, malaria, and
sleeping sickness. In this chapter, we first review the most common approaches
for structure-based flexible ligand docking. Some technical improvements for
more efficient sampling and more appropriate scoring functions are then pre-
sented. Finally, a number of practical suggestions are given for high throughput
docking (HTD) with special emphasis on our fragment-based approach.

14.2 OVERVIEW

The basic strategy of any docking approach is to generate a conformation of a
putative ligand, which is then placed (or docked) in the binding site of a protein
target (also referred to as receptor). The result of these two operations is usually
called a pose. A score has to be assigned to each pose, thus producing a ranking,
with the correct pose (i.e., the natural binding mode) at the first rank or at least as
close as possible to it.

14.2.1 DEerNING THE BINDING SITE

Prior to any attempt of docking, the approximate location of the binding site
needs to be defined. It is easiest for the case in which the crystal structures of the
receptor in complex with some ligands are already known. Usually, the binding
site is then defined as the residues lying within a certain cutoff from the ligands.

A greater challenge is presented when only the 3-D structure of the protein
is known. In that case, profound knowledge of the function of the protein is
necessary. There are programs that analyze the protein surface and provide
quantitative information on it, among them GRASP (Graphical Representation
and Analysis of Structural Properties) [1] and HYDROMAP [2], which calculate
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the electrostatic potential and hydrophobicity map, respectively. Alternatively, some
programs use so-called “flood filling” algorithms that attempt to identify cavities
on the protein surface. Basically, they fill the space that is not occupied by the
protein with points and then roll a large “eraser” over the surface of the protein.
All remaining points are said to be in protein pockets [3].

In general, the residues in the binding site are important because their interaction
with the ligand is stronger and usually treated in more detail. The binding
site residues are explicitly used during the computation of the score and they
are sometimes also considered as entities providing anchor points for the
positioning of a conformation. Therefore, they should be chosen according to
the type and function of the receptor, as well as the program’s strategy to
determine ligand poses.

Recently, the program AutoDock [4,5] was tested on “blind” docking, that
is without defining any selected portion of the protein as binding site [6]. Docking
was successful for ligands with less than 10 rotatable bonds, but only at high
computational cost (in the order of days). Hence, the definition of the binding
site is necessary for virtual screening (VS) of large databases.

Another aspect is the selection of an appropriate protein (and thus binding site)
conformation. McGovern and Shoichet have performed a comparative study [7],
using the x-ray structures of the complexed and uncomplexed protein as well as
conformations obtained by homology modeling of 10 different proteins. The high-
est enrichment of known ligands in a database was in most cases achieved with
the complexed structure. Using a conformation from a complex introduces a bias
toward known inhibitors, however, and should thus be complemented by other
protein structures in a screening project.

14.2.2 GENERATING A POSE

Two main types of approaches to obtain a ligand pose have to be distinguished: the
ones that use only the complete structure of the ligand and those that follow
an incremental strategy. Section 14.2.2.1 and Section 14.2.2.2 refer to the first
type; the incremental methods are described in the Section 14.2.2.3.

14.2.2.1 Generation of Ligand Conformations

Typically, docking programs modify only the torsional degrees of freedom of
rotatable bonds to produce different ligand conformations. It is important to at
least modify the torsional angles of groups carrying hydrogen bond donors (HDO)
to allow optimization of this type of interaction. Torsional angles of bonds in rings,
double or triple bonds, or single bonds to symmetrical groups (like methyl) are
normally kept fixed. In one study with the focus on protein flexibility, the backbone
of peptidic inhibitors was considered as being rigid and only “sidechain” flexibility
was allowed [5]. A rigorous test of a docking program should consider full
flexibility, however [8,9]. An important exception is the docking of small fragments
(like benzene or benzamidine), for whom the rigid body approximation is an
appropriate description of their limited flexibility [10,11]. Some programs do not
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allow ligand flexibility, but the success rates in these cases are low if one does
not use the conformation found in the crystal structure [12]. Clearly, such methods
can hardly be used to predict the binding modes of “new” ligands. The program
DOCK [13,14] also started as a rigid-body docking tool, but ligand flexibility was
introduced in DOCK 4.0, using an exhaustive search and conformational refine-
ment with the simplex method [15].

There are two common approaches for generating different ligand conforma-
tions:

1. In procedures that search the conformational space of the ligand outside
of the binding site, a pool of relevant conformations with low internal
energy is generated, and they are subsequently docked rigidly. The sam-
pling of the ligand conformational space can be done exhaustively, mod-
ifying each torsional angle in discrete steps [16,17]. Alternatively, the
procedure can employ rotamer libraries which assign the most probable
values to torsions depending on the atom types [9,15,18].

2. The conformations can be subject to an optimization algorithm, where
the torsional angles correspond to the variables of the optimizer. One can
further distinguish between two optimizer types: Monte Carlo (MC)
searches [3] (also used for de novo design by DeWitte et al. [19,20])
and genetic algorithms and other evolutionary approaches [4,8,21-23].
MC approaches use a single conformation that is randomly perturbed and
improved. Genetic algorithms (GAs) employ a multitude of information-
containing chromosomes (usually referred to as the population), which
interact with each other and evolve to better solutions. These algo-
rithms are more promising for docking [4], because the energy sur-
faces to be searched are rugged. MC methods tend to be rather slow,
which is a disadvantage for large-scale library screening. Further-
more, if one uses MC-simulated annealing approaches, the additional
problem of choosing an appropriate initial temperature and a cooling
schedule arises.

14.2.2.2 Defining Ligand Positions

There are several strategies to position and orient the ligand in the binding site:

¢ The translational degrees of freedom can be encoded in an optimizer.

e The position can be determined by matching the shape of the ligand to
the binding site.

* The conformation can be superimposed on a set of points that contain
information about the binding site (for references see below).

As an example of approaches that follow the first strategy, the chromosomes
in a GA can additionally carry genes for the translational degrees of freedom of the
ligand and three (in the case of Euler angles) or four (when quarternions are used
[4,24]) variables specifying the ligand orientation.
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In approaches that follow the second strategy, the surface of the binding site is
compared to the solvent accessible surface of the current ligand conforma-
tion. An optimal position is found based on some measure of similarity
between those two. LigandFit [3] uses an algorithm developed by Oldfield [25,26],
which treats both the binding site and the ligand as a collection of grid points. The
shape of such a collection is characterized by a matrix. From the eigenvalues of
these matrices, the shape discrepancy can be computed and used to assign a score
to each conformation. FRED [17] employs a bump map, which is a Boolean grid
representing the receptor, with true values where ligand atoms can potentially
be placed. After this initial filtering step, several other scoring functions can
be applied, among them Gaussian shape fitting. This function has favorable
values when the ligand and the protein have high surface contact and little
volume overlap.

DOCK [14,15] follows the third strategy by first filling the binding site
with spheres of different sizes. The centers of these spheres are considered as
anchors for atoms of the ligand. Variations of this approach at different levels of
sophistication include the use of HDOs and HACs (hydrogen bond acceptors) as
well as hydrophobic surface points as anchors [27,28]. An example of this is
SEED, which was developed to dock small molecules with solvation [10,11].
It uses anchors on the surface of the receptor and performs an exhaustive search
on a discrete space by matching donor and acceptor vectors (or vectors of
hydrophobic interaction centers) and rotating the ligand around these axes.
Other programs use information from the placement of predefined small molec-
ular fragments to match their positions to similar entities in the ligand [16].
The Fragment-based Flexible Ligand Docking (FFLD) program utilizes the
results from the docking of small and mainly rigid molecules that have been
specifically chosen to match chemical moieties actually present in the ligand [8].
The underlying assumption for all these methods is that the interaction between
a protein and a ligand is dominated by some key groups of the ligand. Hence,
if the positions of these groups are determined correctly, the rest of the ligand will
almost inevitably assume the correct pose.

14.2.2.3 Incremental Methods

Programs like FlexE [9] (an advanced version of FlexX [18]), SLIDE [28], or
DOCK 4.0 [15] also try to optimize the interactions of the key groups, but do this
individually for each group. The ligand is first split into several units (fragments),
the first of which is placed as a seed. Usually, the determination of the pose
of the first fragment is done with high accuracy. Sequentially, all the other
fragments are connected in their due order, whereby each position is optimized,
often exhaustively. At every step, the highest ranking solutions are retained
and the next fragment is connected to each of them. It is important to carefully
select only a small number of candidate solutions at every step (pruning) to
control the exponential increase of possible solutions.
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14.2.3 RANKING THE POsEs

At the beginning of this chapter, we distinguished between exhaustive searches
and optimization techniques. The latter minimize an objective function that is usually
computationally not too expensive, because it has to be called quite frequently,
and a force-field-based binding energy is evaluated for the final ranking. Exhaus-
tive searches use only one energy function.

14.2.3.1 Objective Function

The objective function approximates the interaction energy between ligand
and receptor and the internal strains of the ligand and the protein, if the latter is
also flexible. Typical components are the intermolecular van der Waals (vdW) and
Coulombic energy, and sometimes a term for hydrogen bonds. The internal
strain is usually estimated by the intraligand vdW energy and sometimes the
dihedral energy. Most objective functions do not take into account terms for bond,
angle, and torsional strains. It has been proposed to increase the chances of
the optimizer by smoothing the energy landscape. Whitfield et al. [29] introduced
a gravitational force that dominates all other forces in the initial steps of the
search and then decreases over time. It is assumed that the position of the
global optimum does not change due to the smoothing and that only the well
depth is modified. Hansmann and Wille [30] developed energy landscape paving,
which penalizes scores that are found repetitively. Searches can thus escape local
minima and go into regions of different energy.

Most of the docking programs that use physics-based functions (like DOCK
[13-15], AutoDock [4,5], and FFLD [8]) employ a grid-based approach for
efficiency reasons. These grids contain the Coulombic potential and vdW potential
of the protein and avoid the need for recalculating the full energy for every pose
during a database screen. Trilinear interpolation [31} is often used to compute
the interaction energies from the grid values of the potential.

Empirical-based functions (such as the one used in FlexX [18] and FlexE [9])
use additive approximations to estimate the binding free energy. They contain several
terms corresponding to hydrogen bonding, hydrophobic interactions, entropic
changes, and sometimes, interactions with metal ions. The coefficients of each
term in the sum are obtained from a fit to known experimental binding energies
for various protein-ligand complexes [32,33].

14.2.3.2 Binding Energy Function and Postprocessing

After a docking run, the best poses of the ligand can be reranked using a more
accurate force field [34,35]. This often contains the same terms as the objective
function, but takes longer ranging interactions and ligand and receptor desolvation
into account. Sometimes, the ligand pose is also minimized within the receptor
using a molecular mechanics force field [36,37]. In our group, ligand poses are
normally minimized with CHARMm [36] using the CHARMm?22 force field
(Accelrys, Inc.), and often also with the TAFF-force-field (Tripos). Additionally,
the score and rank of each pose can be redetermined using more accurate energy
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functions that include electrostatic solvation like the one in SEED [10,11] or
knowledge-based interaction fields like SuperStar [38], potential of mean force
(PMF) [39], Small Molecule Growth (SMoG) [40], and DrugScore [41]. The energy
rankings produced by the different scoring functions are usually compared, as
a number of studies suggest that consensus scoring improves the chance of
finding a true hit [42,43].

14.2.3.3 Solvation

The effects of solvation play a key role in molecular recognition events. To
calculate the electrostatic contribution to solvation in the continuum dielectric
approximation, one could solve the finite-difference Poisson-Boltzmann (PB)
equation [44-47] for every new position of the ligand molecule. Considering the
current computer power, this would be forbiddingly expensive, especially for
HTS. Therefore, only a few docking programs take into account electrostatic
solvation effects. The continuum dielectric approximation and the generalized
Born (GB) approach [48,49] are used in SEED [10,11], Program to Engineer
Peptides (PEP) [50,51], and DOCK [52]. Fairly recently, Arora and Bashford have
presented a modified GB approach that estimates desolvation by an integral over
the occluded volume [53].

Some docking programs treat solvation effects just with respect to the presence
or absence of conserved water molecules that form interactions that are either
essential for the protein conformation or necessary to mediate interactions
between ligand and protein. Clearly, this approximation completely neglects the
bulk properties of water (e.g., dielectric screening). Osterberg et al. use grids
that have been derived by averaging over several crystal structures, some of
which can contain water molecules [5]. Although the method has mainly
been developed to incorporate protein flexibility, heterogeneities in the presence of
water molecules can be taken into account as well. Schnecke et al. consider
water explicitly and have a term penalizing the replacement of water molecules by
a hydrophobic group of the ligand [28]. Finally, Rarey et al. have described a method
to precompute positions of water molecules and place them if they can form
hydrogen bonds with the (partial) ligand during the incremental construction
in FlexX [54].

14.2.4 ProteIN FLEXIBILITY

In principle, it would be ideal to allow full flexibility for the protein to model
large displacements upon ligand binding. Such studies have already been undertaken
[55], but because the computational time was in the order of days for a single
ligand, this can clearly not be applied to the screening of large libraries of
compounds. As a consequence, flexibility of the protein, if any, is mostly
limited to the binding site and its vicinity. Three different approaches shall be
highlighted here.

AutoDock [5] incorporates both protein mobility and structural water het-
erogeneity. It first generates the energy grids for a number of different protein
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structures. The program then offers several ways to combine these grids into a
single grid. It either computes simple point-by-point averages or weights the
different grid points according to their energies and physico-chemical charac-
teristics. This mean grid approach has the advantage that one can still dock
to one rigid structure, which facilitates the analysis of the results compared
to docking to several distinct conformations. On the other hand, it can only
be used to approximate minor displacements. Moreover, the mean grid structure
is the product of an averaging scheme and thus might not be observable in
reality. Another drawback is the fact that no protein structure is present, but
only its representation as a grid. One could thus not follow a multiple step
approach (See Section 14.3.4) and do minimization with CHARMm [36], for
example.

FlexE [9] is based on a so-called united protein description [56], which is derived
from superimposing the backbones of an ensemble of different crystal struc-
tures. Variations of the structure in the binding site region are either maintained
as distinct possibilities or are combined to one structure in case they are similar.
During the incremental construction algorithm, the ligand is placed fragment by
fragment into the active site of the united protein description. After each con-
struction step, all possible interactions between the (partially) placed ligand
and all instances of the united protein description are determined. The score is
then assigned for the (partial) ligand in the best instance.

SLIDE [28] goes one step further and first docks a rigid scaffold into a
rigid binding site. Gradually, the other parts of the ligand are attached to the
scaffold. Clashes between the ligand and the protein are resolved by allowing
rotations of bonds (both in the ligand and the protein) that have been defined
as flexible beforehand. The bonds that should be rotated are determined with
mean-field theory, which is capable of finding the minimum amount of rotations
necessary to resolve all clashes [57-59]. Although flexibility is limited to the
binding site residues, this approach comes close to an induced fit.

One of the most thorough approaches besides [55] has been undertaken by Lin
et al. [60]. For their relaxed complex method, first long molecular dynamics (MD)
simulations of 2 ns were conducted, with snapshots taken every 10 picoseconds
(ps). Two candidate compounds were then docked to the ensemble of MD
conformations. This technique recognizes the fact that ligands may bind tightly
to conformations that appear only infrequently in the dynamics of a protein.
However, every molecule has to be docked to a large number of different protein
structure which strongly limits the size of the library.

14.3 TECHNICAL IMPROVEMENTS
14.3.1 CURRENT LIMITATIONS

As mentioned above, docking approaches can be described as a combination of
two components —the search strategy and the scoring function. Because in most
cases the objective function (See Section 14.2.3.1) is also used as the binding
energy function (See Section 14.2.3.2), in the following, the term scoring function
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will be employed. The critical element of the search procedure is the amount of
time required to effectively sample the relevant conformational space. The scoring
function has to be fast enough to allow its application to a large number of potential
solutions and, in principle, be able to effectively distinguish the experimentally
observed binding mode from all others explored in the search. Consequently, the
scoring function should include and appropriately weight just the energetic con-
tributions that are relevant in the binding process. Nevertheless, an accurate scoring
function will generally be computationally expensive and so the function’s com-
plexity is often reduced at the expense of a loss in accuracy.

The proper combination of an effective search algorithm and an adequate scoring
function, whose global minimum corresponds to the biologically relevant complex,
will solve the docking problem in a reasonable amount of time. However, because
the approaches published up to date can fail, especially in cross-docking, this ideal
combination has obviously not been found yet. Therefore, improvements in the
efficiency of the search strategy and the accuracy of the scoring function are
required as they will increase the reliability of the docking predictions and
reduce the computational requirements, which is important for screening large
libraries.

Docking predictions are still prone to fail and often the proposed binding
modes do not reproduce the crystal structure of the protein—ligand complex
[6,9,35,61]. In case of failure, the predicted binding mode can have a worse or a
better score than the x-ray structure of the ligand. In the first case, the search
strategy adopted in the docking approach could have been not effective enough.
The search algorithm was thus not able to generate a pose sufficiently close to the
experimental binding mode. In the second case, the failure might arise from an
inadequate scoring function that allows more favorable binding modes than the
one in the crystal structure. In the first case, one should focus on the improvement
of the search procedure; in the second case, one should concentrate on the opti-
mization of the scoring function.

Unfortunately the situation is much more complicated because the components
of a docking protocol are not separate entities and as such they should be improved
together. In the first scenario, for example, the scoring function could have played
an important role because the resulting energy landscape was not smooth enough
to allow the search to proceed efficiently while avoiding premature convergence.
Although the scoring function described the protein—ligand interactions well, it
was not suitable for the applied search strategy. In the second scenario, it could
have happened that the experimentally determined structure was not close to a
minimum of the scoring function. In this case, any energy comparison is much
less meaningful. Although a proper combination of an efficient search algorithm
and an accurate scoring function are the keys for a successful docking protocol,
it is certainly not clear what “proper,” “efficient,” and “accurate” mean. In Section
14.3.2. and Section 14.3.3, we describe some important requirements for both the
search strategy and the scoring function and how they are embedded in our docking
approach.
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14.3.2 SEARCH STRATEGY

Docking procedures belong to the category of global optimization techniques where
the aim is finding the global minimum of the scoring function. A rigorous search
algorithm would exhaustively investigate all possible binding modes between
the ligand and the receptor. The degrees of translational and rotational freedom
of the ligand would be explored along with the internal conformational degrees
of freedom of both the ligand and the receptor. However, this is impractical
because of the size of the search space, even when considering a rigid protein.
Only a small amount of the total conformational space can be sampled and
a balance must be reached between the computational expense and the amount
of search space examined. A wide range of global optimization algorithms are
currently available, but not all of them are suitable for docking. Most optimization
algorithms for docking fall into one of three classes— gradient-based algorithms,
combinatorial algorithms, and stochastic algorithms [62].

The strength of gradient-based methods is that they efficiently find a local
minimum close to the initial conformation. Because gradient-based methods do not
allow the system to escape from local minima they have to be combined with
other search strategies, such as cycles of MC perturbations and gradient min-
imizations [63]. Moreover, most scoring functions do not have an analytical
gradient.

Combinatorial algorithms have the potential advantage of being extremely
fast and effective. The most successful combinatorial algorithms used for
molecular docking [10,11,18,64,65] have set themselves apart in their ability to
dock libraries of small molecules in a reasonable amount of time. Unfortunately,
increasing the number of conformational degrees of freedom leads to an explosion
of the dimension of the search space. To be able to sample such large spaces, the
computational expense is usually controlled by a discretization of the space, which
can restrict the effectiveness of the algorithm.

Stochastic algorithms have the advantage that, irrespective of the dimen-
sionality of the problem and given enough time, they get arbitrarily close to
the global minimum. On the other hand, they have the disadvantage that
they require a large amount of central processing unit (CPU) time to
achieve an acceptable degree of reliability [4,62]. Although computationally
expensive, stochastic optimization algorithms seem to be the most suitable for
flexible docking. In fact, the dimensionality of the search space and the rugged-
ness of the binding energy landscape make both gradient-based and combina-
torial methods less effective. GAs are stochastic optimization methods that
mimic the process of natural evolution by manipulating a population of data
structures called chromosomes [66,67]. Although requiring rather large amounts of
CPU time, GAs have been shown to effectively explore rough energy surfaces and
to be suitable as search strategies for docking [4,8,21-23,68,69]. A GA was chosen
as the search strategy for the original version of FFLD [8], the docking protocol
developed in our group. During the FFLD evolution, a loop over generations
is performed until the maximum number of steps is reached. Starting from an
initial random population of chromosomes containing the dihedral angles of
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the ligand as genes, the GA repeatedly applies two mutually exclusive evolutionary
operators —one-point crossover and mutation. This yields new chromosomes (chil-
dren) that replace appropriate members (parents) of the population. These non-
linear genetic operators help to overcome the barriers of the binding energy
landscape and the search can proceed efficiently. Throughout the simulation, a
constant evolutionary pressure is kept by selecting parent chromosomes with a
bias toward the fittest. This pressure moves the population toward conformations
related to the global minimum and increases the fitness of the individuals.
The selection of the members of the population that should be replaced by
new chromosomes is a crucial step. To avoid premature convergence, it is
important to keep structural diversity. In the search strategy used in FFLD [8],
both the energy difference and the conformational similarity are taken into
account to determine if a given member of the population should be replaced
by a new chromosome. At the end of each GA step, every new chromosome is
compared with the old population by the following procedure: if a similar chro-
mosome is found in the old population, it is replaced by the new chromosome
only if the energy of the new one is more favorable; otherwise, the new
chromosome is discarded. The similarity test significantly improves the efficiency
of the search strategy and avoids premature convergence [50].

Following a comparative study of several search engines in AutoDock [4], a
hybrid search procedure was introduced in the latest version of FFLD [35]. The
hybrid search combines a global optimization procedure based on a GA with a local
minimization algorithm to improve exploration of regions within energy basins.
Local optimization has been shown to dramatically improve the success rate of the
GA search without any loss in efficiency [4]. For the best 10% of the new individuals,
a local optimization is performed to improve the ligand fitness before performing
the similarity test. To evaluate the performance of the hybrid search procedure
implemented in FFLD, it was compared with the GA of the original version [8].
The simulations showed that the hybrid search is more efficient than the canonical
GA as it always reached a conformation with lower energy. The results of two
docking experiments carried out with both search methods are presented in Figure
14.1. The first experiment, in which a ligand with 10 rotatable bonds was docked
in human-immunodeficiency virus type 1 (HIV-1) protease (Figure 14.1, top), shows
that the hybrid search procedure is more efficient than the genetic algorithm espe-
cially at the beginning of the simulation where the energy gap is large. At about
60% of the evolution the gap decreases and the performance of the two methods is
comparable. Docking a ligand with 21 rotatable bonds in HIV-1 protease (Figure
14.1, bottom) shows that the hybrid search procedure performs better during the
entire simulation and the energy gap increases until the end. Moreover, the standard
deviation of the hybrid search evolutions (shown as error bars in Figure 14.1, bottom)
is larger, indicating that it is less prone to converge prematurely. This comparison
shows that the local search improves the quality of the docking predictions in case
the conformational space of the ligand is large. This is mainly due to the fact that
the random perturbations of binary strings performed by the GA during the evolution
correspond to radical jumps in the energy landscape and may be too large. On the
contrary, the local optimizer is able to refine the large perturbations due to crossover
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FIGURE 14.1 Evolution of the best individual of the population averaged over 10 docking
runs for two different experiments. Empty and filled bullets indicate evolutions performed by
GA and hybrid search procedure, respectively. Docking of HIV-1 protease ligands with 10
and 21 rotatable bonds are shown from top to bottom, respectively. In the bottom plot, the
vertical bars show the standard deviation computed over 10 docking runs.

and mutations and leads to a better investigation of the energy landscape. The results
of this docking study [35] suggests, in agreement with previous studies [4], that
hybrid search methods should be preferred to canonical GAs.

The similarity test and the hybrid search procedure are just examples of
possible means one can adopt in a protocol to increase the efficiency and
accuracy of the search algorithm. However, the study clearly indicates that
there is still room for improvement and that novel concepts can be effective.
[t is worth stressing again that the search algorithm is only half of the docking
problem; the other factor to be incorporated into a successful protocol is the
scoring function. In Section 14.3.3, the requirements for a scoring function
that are suitable for docking are discussed.
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14.3.3 ScoriNG FUNCTION

Underlying any docking approach is a model of ligand—protein interactions describ-
ing molecular recognition. In principle, a complete thermodynamic description of
this process involves contributions from several balancing factors, including solvent
reorganization, conformational entropy, and vdW and electrostatic interaction ener-
gies. For biomolecular systems, it is difficult to evaluate these terms with sufficient
accuracy to permit quantitative predictions. Moreover, the complete energy function
necessary for prediction of accurate binding affinities may not be suitable for
docking simulations. The scoring function used in docking simulations should be
a simple model of ligand—protein interactions rather than an estimation of the free
energy of binding. It must be simple enough to permit a rapid evaluation and, more
importantly, the resulting energy landscape must be smooth enough to allow the
search to proceed efficiently without getting trapped in local minima. Nevertheless,
a scoring function that is suitable for docking needs to be accurate, because it must
be able to distinguish the experimental binding mode from all the other modes
explored by the search algorithm.

With respect to this point, Verkhivker et al. [69] suggested that such an energy
function should fulfill both a thermodynamic and a kinetic requirement. In
other words, the energy related to the crystallographic structure of the ligand
in the complex must be the global minimum of the binding energy landscape
(thermodynamic requirement), but at the same time this conformation must be
accessible during the search (kinetic requirement). The complexity of a complete
and accurate force field that describes the binding process precisely, although it
would fulfill the thermodynamic requirement, typically results in a rugged energy
landscape and thus does not meet the kinetic criterion of the docking problem.
The multitude of energetically similar but structurally different local minima
inevitably leads to kinetic bottlenecks that dramatically reduce the frequency
of successful structure predictions. This is the case for standard molecular
mechanics force fields [36,37], because they have not been designed to reduce
the ruggedness of the energy landscape. One of the critical factors that deter-
mines the success rate in predicting the structure of ligand—protein complexes
is the roughness of the binding energy landscape [68,69]. Consequently, the
applicability of standard force fields in docking is limited and simpler molecular
recognition models that fulfill both the thermodynamic and kinetic requirements
are to be designed and developed.

A fundamental component of models for molecular recognition is the steric
energy function, which is based on surface complementarity. However, this term
alone is not sufficient to distinguish effectively between alternative binding
modes. Electrostatic interactions may provide additional specificity to discrim-
inate between true and false solutions and they should be embedded in the scoring
function. Finally, an intraligand energy term is also required; it largely reduces the
conformational space to be investigated by preventing strained dihedrals and steric
clashes among atoms of the ligand. Hence, the three key elements of a scoring
function necessary for robust structural assessment during docking are:
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1. Ligand—protein steric interactions
2. A simple description of ligand—protein electrostatics
3. An intraligand strain

In the FFLD docking approach developed in our group [8], the scoring function is

AE — Eligand +Eligand + Einter +Ein1er (]4 ].)

1otal dihedral vdW vdW polar

FFLD (D. Huang, unpublished results) Jéqﬁrélthe lowest order terms of a cosine
expansion for each torsion. The second (Eé’f;,"d) and the third (E;;"f,’) terms of
Equation 14.1 are intraligand and ligand-receptor vdW energies, respectively.
Both terms are described as the sum of an attractive dispersion and a steep
repulsion term by the 6-12 Lennard-Jones potential, The last term in Equation
14.1 is the protein-ligand polar interaction energy gE inter ) . The intermolecular polar
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term approximates electrostatic interactions an

The dihedral energy of the ligand (E"*¢ } has recently been implemented in
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includes hydrogen bonds (HB)
and unfavorable polar contacts (UP), namely two HAC (or HDO) atoms close
to each other. Hence
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where N,, and N, are the number of hydrogen bonds and the number of unfa-
vorable polar contacts, respectively. The energies E,; and E, are approxi-
mated by constant values [35]. Distance- and angle-dependent criteria are
considered for the definition of a hydrogen bond, but only a distance depen-
dence is applied for unfavorable polar contacts. Originally, the distance depen-
dence of both terms in Equation 14.2 and the directionality of the hydrogen
bonds follow simple step functions (Figure 14.2, top left and top right, dashed lines)
that are efficiently evaluated [8]. The steep repulsive part of the Lennard-Jones
potential directly affects the height of the energy barriers and generates a rough
energy surface. To reduce the steepness of this energy component, an intermo-
lecular soft-core vdW term was implemented [8]. Following previous studies by
Gehlhaar et al. [68], the repulsive part of the Lennard-Jones potential was
linearized in FFLD, such that the functional form has a finite value when
the interatomic distance approaches zero (Figure 14.2, bottom). The inter-
molecular soft-core vdW does not penalize binding modes with small atomic
interpenetrations of the ligand with the protein and permits the formation of
unphysical states that could open multiple pathways leading to the crystal
structure. These states, otherwise forbidden by the presence of realistic energy
barriers in standard force fields, may provide kinetically accessible routes to the
global minimum.

In a recent study [35], a significant improvement with respect to the original
version of our docking approach [8] has been observed by replacing the step
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FIGURE 14.2 The distance dependence of hydrogen bonds (HB), unfavorable polar contacts
(UP) and ligand-receptor vdW interactions is presented from left to right, respectively. The
smooth functions (solid lines) [35] used for replacing the original stepwise functions (dashed
lines) in the intermolecular polar interaction term are shown. On the bottom, the intermolecular
soft-core vdW (solid line) [8] is compared with the 6-12 Lennard-Jones potential (dashed
line). Values are in kcal/mol.

inter

functions in the ligand—receptor polar interaction term (E po,ar) with smooth func-
tions. Smooth functions allow the optimization of the hydrogen bonding pattern
avoiding discontinuities on the energy landscape. The continuous gradient can
guide the search algorithm toward lower energy conformations at every point.
In the latest version of the FFLD docking program, a sigmoidal function was
used to describe the unfavorable polar contacts and bathtub-shaped functions were
used for the distance dependence and the directionality of the hydrogen bonds
(Figure 14.2, top left and top right, solid lines). Furthermore, it was observed
that the distance- and angle-dependence in the polar term significantly reduced
the noise arising from the energy degeneration of structurally different ligand
conformations and improved the convergence of the docking runs [35].
Previous works by Gehlhaar and Verkhivker |68,69] suggested that a dynamical
modification of the scoring function is helpful. In their docking experiments, an
adaptive scoring function based on a piecewise linear potential was used. During
docking, the height of the energy barriers had been continuously augmented by
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increasing the repulsive term of the potential. Thus, in the later stages of the
simulation, this adaptive procedure narrowed the search to only a few energet-
ically favorable binding modes, funneling the algorithm to the global minimum.
According to the authors, the adaptive softness of the energy function facilitated
the conformational search both by promoting escape from local minima and
by destabilizing alternative solutions. Increasing the repulsive term of the
potential yields a rougher energy landscape, but the energy function becomes
more and more accurate and leads the search to the global minimum. Similar
dynamical modifications of the energy function have been adopted to mimic the
docking funnel [29,30,55]. Although the essential idea is rather simple, no
general rules for adapting the potential are available and the optimal way
for scaling the barriers may be strictly dependent on the system explored.
Moreover, if the scaling is not accomplished in a proper way, the adaptive
scoring function might not fulfill the kinetic requirement. Because of these limi-
tations, we and others [35,70-73] have chosen an alternative approach. This is
described in Section 14.3.4.

14.3.4 MuLtipLe-STEP DOCKING

Combining different scoring schemes into a single docking approach is a useful
method to increase the effectiveness of a docking protocol. A two-step strategy
makes use of a simple molecular recognition model based on the minimal frus-
tration principle [68,69], followed by a more accurate energy evaluation to rank
the docking solutions. When using multiple-step procedures, there is a clear
distinction between the objective function, which is fast but approximative, and
the binding energy function (See Section 14.2.3.1 and Section 14.2.3.2).

The basic assumption behind multiple-step approaches is that there is at least
one low-lying minimum of the objective function inside the global minimum
basin of the binding energy. The fast objective function is then thought of
as a coarse-grained description of the more accurate binding energy function.
The first step intends to overcome the kinetic bottlenecks of the accurate energy
function by using a simpler and much less frustrated energy model. After the first
step of the procedure, the final set of ligand conformations can undergo a
gradient-based minimization with a standard force field. The minimized confor-
mations are then ranked according to their energy. Multiple-step docking
approaches are widely used and have been published [70-73]. A multiple-step
procedure was also applied in the most recent version of our docking approach
[35]. The results of FFLD [8] were postprocessed by CHARMm minimization [36]
of the flexible ligand in the rigid receptor. The docking study showed the effec-
tiveness of a multiple-step strategy. It was possible to correctly reproduce the binding
mode of highly flexible inhibitors (up to 22 rotatable bonds) of HIV-1 protease,
if the strain in their covalent geometry upon binding was not too large. Moreover,
it was observed that the postprocessing step led to more reliable predictions
and improved the success rate of the docking experiments [35].
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14.4 PROTOCOLS

In this section, we will explain the use of our docking approach. However,
many of the guidelines and recommendations introduced here will also hold true
when using other docking programs.

14.4.1 Our DOCKING APPROACH

The SEED/FFLD approach uses a GA to optimize ligand conformations and
previously docked fragments to place the ligand in the binding site. It relies on the
assumption that the most significant interactions with the protein are formed
by three or more fragments of the ligand. Hence, it should be possible to first
investigate the binding modes of the fragments and then use this information
to place the whole molecule. This docking approach consists of four separate
steps, the principles of which shall be described below. A more detailed protocol
can be found in the following subsections and the original articles [8,10,11,35].

At first, those parts of the ligand that are supposed to account for most of the
interactions (the fragments, Figure 14.3) have to be defined. This choice is rather
important, for example, fragments that are too small will yield anchor positions
that cannot discriminate the physicochemical characteristics of the binding site. A
computer program has been developed to automatically choose at least three
fragments (P. Kolb et al., unpublished), because the matching algorithm
employed in the last step uses triangles. In the second step, the selected
fragments are minimized with a force field to obtain low energy conformations.
Subsequently, they are docked as rigid molecules with SEED [10,11] (Figure 14.4).
As described before, SEED uses polar and hydrophobic vectors as anchors. The
polar vectors are distributed around HDOs and HACs, whereas apolar vectors are
used to mark hydrophobic regions. The latter are obtained by placing a low
dielectric sphere (methane) at equal intervals on the solvent accessible surface of
the protein. Points that have a favorable interaction energy are retained and the
vectors are defined by joining each point with the corresponding atom center.
During docking, every vector is matched to the complementary vectors on the
fragments and the fragments are rotated exhaustively around these vector-defined
axes. For each fragment position on each SEED point, a binding energy, which

FIGURE 14.3 Schematic depiction of the fragment selection process. The molecule is Vira-
cept (Agouron/Pfizer).
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FIGURE 14.4 Schematic depiction of the docking process of the small fragments.

includes electrostatic solvation, is evaluated. Thus, if the fragments chosen are
rigid (which is the case for small molecules and aromatic systems), the ranking
is determined with high reliability. The information obtained from SEED consists
of the 3-D coordinates of the geometrical centers of the fragment poses as well
as their binding energies. Each fragment pose is one possible corner point of the
placement triangle used in the last step. On average, a SEED run yields up to 100
poses per fragment type.

In the third step, this number is reduced to obtain a manageable number
of possible triangle combinations. In practice, we reduce it to 20, using a
clustering method which is based both on geometric proximity and the value
of the binding energy for each pose [35]. For each fragment, the 20 points
define a map that contains the important information from SEED and is still
diverse enough to offer useful anchor points (Figure 14.5). Diversity is
especially important because using only the top-ranked poses of the fragments
does not always lead to the solution. This is due to the fact that the binding
mode of the entire ligand is a compromise that tries to satisfy most of the
fragments.

The fourth and last step is the docking of the complete putative ligand.
This is done with the program FFLD [8], which uses a scoring function consisting
of ligand dihedral and vdW energy, and protein—ligand polar and vdW contribu-
tions (See Section 14.3.3). Ligand conformations are generated and optimized
by a GA, which encodes the torsional angle values of the rotatable bonds. For
each conformation, the geometrical centers of the three fragments define a
triangle. Based on the side lengths of the ligand triangle, FFLD finds those
SEED points that form triangles of approximately the same shape. It then

FIGURE 14.5 Schematic depiction of the clustering procedure. The different fragment types
are shown for clarity.
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tries to match the ligand triangle with each of the possible SEED triangles
using a least-squares-fitting method (a variant of the Kabsch algorithm [74]) and
assigns the score of the best placement to this conformation (Figure 14.6).
The output of FFLD consists of the final poses for all conformations, usually
100 to 200 in total. It is worth noting that, because every conformation yields
multiple poses at each step, FFLD will not only find the best binding mode, but
also a number of alternative binding modes of comparable score. The alternative
binding modes, in fact, can be used as a starting point for further postprocessing
with more accurate energy functions.

14.4.2 PREPARATION OF THE LIBRARY OF COMPOUNDS

The first and most basic requirement is that the ligand is a chemically complete
molecule (i.e., all valences must be satisfied). Special care must be taken to specify
the correct bond types, because this will be the basis for the definition of the bonds
that are rotatable. Another main concern is the correct assignment of the partial
charges. These are needed for the calculation of the interaction energy in SEED
and the postprocessing step. We use the modified partial equalization of orbital
electronegativity (MPEOE) method developed by No et al. [75,76] as implemented
in WITNOTP (A. Widmer, Novartis Pharma AG, Basel, unpublished), which yields
partial charges consistent with those of the protein atoms in the CHARMm?22
force field. Other implementations should also give reliable partial charges, but we
have not tested them.

As a prerequisite to docking, one has to consider the state of ionizable
groups in the protein (see below) and the ligand. Because the physiological con-
ditions for protein—ligand complexes are in most cases close to pH 7, acidic
groups are usually in a deprotonated and basic groups in a protonated state.
A pK, calculation could be done with a finite-difference Poisson solver in
case of uncertainties. For a heterogenous library of compounds, it is much
more difficult to assign formal charges. We usually check for groups where the
assignment is evident (e.g., primary, secondary or tertiary amines, which are
positively charged). Afterward, atom types for the CHARMm?22 force field have
to be assigned. Any ligand should furthermore be minimized with an accurate force
field to obtain a low-energy conformation.

O

FIGURE 14.6 The docking process: FFLD tries to place the triangle defined by a confor-
mation of the ligand (generated with the GA) on the anchor points computed by SEED.
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14.4.3 FrAGMENT CHOICE

The decomposition of a ligand into fragments and the choice of the anchor fragments
have been automatized recently (P. Kolb et al., unpublished). We will list the
major rules here as they can be of general interest. The decomposition is
guided by the fact that SEED treats all molecules as rigid. Hence, preference
is given to aromatic rings and other small rings and molecules that contain several
amidic, double, or triple bonds. The fact that nonaromatic ring systems might
have several distinct conformations can be accounted for by the ability of SEED
to dock multiple (predefined) conformations at the same time. If one of these
conformations can be docked with a lower binding energy than the others,
it will automatically be chosen in the subsequent steps, because it will receive
higher ranks.
The selection follows a few simple rules:

1. All atoms in a fragment must be connected by rigid or terminal bonds
(for the definition of rigid bonds see above).

2. Large fragments are preferred because there are more steric constraints
for large entities, as a consequence these should be positioned first.

3. Cyclic fragments are preferred because they usually are more rigid
than acyclic moieties.

4. Because the fragments should be involved in the most significant inter-
actions, those that contain HDOs and HACs are selected. Charged
groups usually do not make such good anchors, because they tend
to be positioned at the borders of the binding site, which are more
exposed to the solvent. (However, there are exceptions as in the case
of thrombin, where a favorable electrostatic interaction is provided by a
charged aspartic acid in the specificity pocket [8].

5. Fragments that are close to the center of the molecule are omitted,
especially if they have a high number of substituent groups. Such central
or scaffold fragments will hardly ever form specific interactions.

6. Finally, fragments should not overlap (i.e., one atom should not be
part of two fragments), because this would mean that there are no
rotatable bonds in between, so their relative position cannot be changed.

These rules can be exemplified with the molecule XK263 (DuPont Merck, Figure
14.7). In principle, there are three fragment types that could be chosen —naphthalene,
benzene, and the cyclic urea in the center. The largest fragment would be the cyclic
urea. According to Rule 5, this is not a good choice as it is the core fragment and
has four substituents. Furthermore, it is the most flexible of the three types, which
is another point against its choice according to Rule 2. The remaining two types are
aromatic and thus a recommended choice (Rule 1). Finally, it is better to select the
two naphthalenes, because they are larger than the benzenes (Rule 2).

A more difficult choice is presented by acetyl-pepstatin (Figure 14.8), because
it has no rings and almost no rigid bonds. All the fragments obtained by the
application of Rule 1 are therefore small. All the larger fragments with a rigid
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FIGURE 14.7 XK263 (Dupont Merck) is a nanomolar inhibitor of HIV-1 aspartic protease

(PDB accession code of the complex: IHVR). Selected fragments are bold. Curly arrows
denote rotatable bonds.
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FIGURE 14.8 Acetyl-pepstatin is a micromolar inhibitor of HIV-1 aspartic protease (PDB
accession code of the complex: SHVP). Selected fragments are bold. Curly arrows denote
rotatable bonds.

bond (the amide groups) are located in the backbone and will not make good
anchors (Rule 5). One of the few choices remaining is to select three i-butanes
(the sidechains), which are preferable with respect to the terminal carboxylic
group, because this group is charged (Rule 4).

14.4.4 PROTEIN PREPARATION

It has to be emphasized that the preparation of the protein is a crucial step in the
protocol and should be done carefully. It is not advisable to use automatic
methods, as they cannot take into account all eventualities and special cases.

14.4.4.1 First Checks

The attention of the experimenter should be turned to all specific and unusual details,
like nonstandard amino acids (e.g., cysteine-sulfonic acid, selenomethionine,
etc.). Furthermore, the protein can contain prosthetic groups, cofactors, or
other small molecules. Prosthetic groups should be kept for the docking run in
all cases, because they will most probably be present in the protein in its native
environment. Whether or not cofactors should be considered, depends on the
system. Most probably, they can be removed, since they will not compete
with an inhibitor, unless they have a strong affinity to the protein by themselves and
will be present in the binding site most of the time. In general, small molecules
(such as polyethylene glycol) are due to the crystallization conditions and should
be removed. The final decision, however, has to be taken ad hoc for every system.

In any case, one should check in the pdb-file that no atoms are missing in the
aforementioned residues and molecules, because most structure manipulation
programs do not check on nonstandard residues automatically. Quite frequently,
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crystal structures will lack even whole parts of the protein due to poor electron
density in disordered regions. This fact is usually commented on in the pdb-
file or in the paper. It is then up to the researcher to decide if this is negligible
or not. Judging from our experience, in the majority of cases, these incomplete
regions are far away from the binding site. Thus, they will not have a great
influence on the binding energy evaluation. Unless there are only one or two
amino acids missing, it is not advisable to rebuild the protein in those regions.
The error introduced by guessing the conformation without proper equilibration
will probably be larger than the error due to the absence of the residues.

Another special case are ions. Those that are required for the stability
of the protein should be kept, especially if they are close to the binding site.
An ion in the binding site should always make a favorable interaction with
an oppositely charged group in the ligand. It is advisable to determine the
charged warhead for the candidate ligands a priori and discuss the simpleness
of synthesis of the resulting compounds with a medicinal chemist.

Lastly, the presence of disulfide bonds has to be investigated. Information
whether or not there are any should be listed in the pdb-file in a line commencing
with “SSBOND.” However, it is safer to visualize all cysteine residues. If the
sulfur-sulfur distance between two cysteine residues is around 2 A and the
relative geometry is right, they will most likely form a disulfide bond.

14.4.4.2 Charged Residues

Special care should be exercised when treating residues with ionizable groups. The
most sophisticated approach is to solve the finite-difference Poisson equation to
calculate the pK, of all titratable groups. If the in vitro tests are done at physio-
logical pH, we normally assume both basic and acidic sidechains as well as the
terminal carboxyl and amino group as ionized.

The situation for histidine residues is more complicated. First, one has to
select a protonation state and then, in the case of monoprotonation, also which
nitrogen (6 or €) should be protonated. To properly assign the protonation
state of the histidines, it is important to consider the local environment of these
residues in the folded structure of the protein. At low pH (pH<6), a diprotonated
state should be assigned to histidines partially or fully exposed to the solvent.
For calculations at physiological pH, a monoprotonated state is commonly
preferred and we assign a monoprotonated state to the histidines irrespective of
their position. If the environment does not indicate a clear preference for one
of the two variants because of potential HACs or steric hindrance, we arbitrarily
choose the §-protonated variant.

Related to the issue of the charged residues is the choice of the interior
dielectric constant of the protein, which is necessary for SEED. The value of
this constant influences the strength of the coulombic interactions and can lead
to significantly different results, as model calculations have shown (Majeux et
al., unpublished results). Previously, values ranging from 1 to 4 have been used
[10,11]. It is useful to perform preliminary docking runs with interior dielectric
values of 1, 2, and 4 and compare the results with available crystal structures.
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14.4.4.3 Adding Hydrogens

It is necessary to add hydrogens, because files in the Protein Data Bank (PDB)
usually do not contain any. This should be done with a program like CHARMm
[36] using the HBUILD module, which first places those hydrogens whose
positions can be determined unambiguously, such as hydrogens connected to a
peptidic nitrogen, and afterwards performs exhaustive searches to place hydroxyl
hydrogens on serine, threonine, and tyrosine. To assign atom types, we use
the atom type definition of the CHARMm?22 force field. It has proven useful to
recheck on all nonstandard residues to verify the correct assignment. Finally, the
hydrogens should be minimized with an appropriate force field while keeping the
protein backbone rigid.

14.4.4.4 Binding Site Definition

As mentioned above, this step is of high importance. To begin with, one should
have a look at the publication describing the crystal structure and the interactions.
The basis for the selection of the residues belonging to the binding site will most
often be the pose of a known ligand. If such information is not available, one
has to select the binding site by hand. In that case, in-depth knowledge of the
function of the protein or crystal structures of closely related proteins of the
same family are necessary.

We select the binding site by first determining all protein atoms that are within
a cutoff radius of 5 A from any ligand atom. It is important that there is
a clear inside and outside of the binding site to avoid the positioning of anchors
in solvent-exposed regions of the protein. Hence, selecting residues whose
sidechains point away from the binding site have to be avoided. To achieve this,
only residues which have at least 50% of their atoms within the cutoff distance
are marked as members of the binding site. The cutoff should not be too
small, as the bias toward the binding mode of the known ligand would be
too big and no alternative ones could be detected. On the other hand, because
the binding site residues are providing the anchor points for SEED, the number
of anchors correlates with the number of residues. Thus, docking would take
increasingly long as the binding site becomes larger and would additionally yield
too many solutions, which are then difficult to rank. If a large binding site is really
needed, it is probably better to split it into several (overlapping) sectors. Sometimes,
it is advisable to manually alter the definition until one is satisfied with the distri-
bution and the number of the anchor points. In this case, one has to remember
that the binding mode (and consequently the ranking of a library of compounds)
might be affected by the human intervention, which is usually based on previous
knowledge. This bias might preclude interesting surprises like alternative bind-
ing modes [77].

As was mentioned before, SEED puts anchor vectors on atoms of the binding
site residues. Clearly, only vectors pointing inside the binding site should be
used. For that reason, the latest version of SEED employs a cutoft based on the
angle between the vector and predefined points in the binding site (usually the
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heavy atoms of a native ligand) for choosing the most suitable ones [35]. Using
the atoms of a ligand from a known complex to define the binding site does
not introduce a bias, though, and corresponds to the situation in an advanced
drug design program, where one or more crystal structures of protein/ligand
complexes have already been solved.

Another critical issue is the ionization state of groups in the binding site.
This is probably best illustrated by the case of the aspartic proteases, which
contain an aspartyl dyad in the cleavage site. Piana et al. [78] have shown that,
besides the pH, the ligand has an influence, as it can stabilize either the neutral,
negatively or dinegatively charged form of the dyad state. Consequently, the
charge state of the dyad can influence the types of ligands that will receive a
high ranking.

14.4.4.5 Conserved Water Molecules

In many proteins, water molecules located at distinct positions can play a crucial
role because they provide important interactions with the ligand. Wrongly
positioned water molecules, on the other hand, can impede docking and make
the detection of the correct binding mode impossible. Deciding which water
molecules to keep is not trivial. Evidence can come from multiple x-ray
structures with different ligands. If a water molecule is repeatedly found at
the same position and also forms hydrogen bonds with the ligand, it is likely
to be conserved because of structural relevance. Additional help is offered by
prediction programs such as ConSolv [79], which compares the ligand-free form
of the protein with the complex.

Our example, HIV-1 protease, for which numerous x-ray structures are
available, normally contains a water molecule bridging the two flaps and the inhib-
itor. This water is necessary if one wants to reproduce the binding mode of
acetyl-pepstatin in its native protein structure, SHVP. The structure of 1HVR,
however, does not contain a water molecule at that specific position. During
binding, the carbonyl group of the cyclic urea displaces this water and
directly stabilizes the two flaps of the protease. Therefore, docking the ligand
XK263 in IHVR requires the water site to be empty. It is possible to reproduce
its binding mode only after removal of the water. However, it is not possible to
know this a priori for every molecule in a large database for screening. Hence,
in the absence of further information, we suggest removing all water molecules
from the binding site.

14.4.4.6 Reference Structure

For every new project, the setup of the approach chosen for docking should be
validated. The most common way to do this is by redocking a ligand to the
corresponding protein structure from the complex. However to judge the perfor-
mance of the method, it is crucial not to use the exact pose of the ligand from the
crystal structure. This pose is the time-average over the ligand poses during the
collection of the diffraction data (as is the case for the conformation of the protein).
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Thus, it is likely that, according to the parameters of the applied scoring function,
some atom positions have clashes with the protein. This problem can be solved by
minimizing the ligand within the binding site with a gradient-based method apply-
ing the same scoring function as will be used for docking, while keeping the protein
rigid. The minimized ligand then offers an appropriate reference structure for
redocking calculations.

The ligand conformation which is used as input structure for the docking
experiments should have been minimized with a force field outside of the binding
site to remove any geometrical bias. However, one has to bear in mind that the force
field will not only modify the torsion angles, but also bond lengths and bond
angles. If the strain in the ligand conformation is large upon binding, the
minimization outside of the receptor might yield a covalent geometry that is not
compatible with the binding site. Therefore, because in the docking search only
torsional degrees of freedom are considered, the docking approach might not be
able to reproduce the experimental binding mode [35].

14.4.5 RunNING SEED

SEED provides the anchors for the final docking procedure. Thus, it is worth
analyzing the SEED results in detail. One should have a close look at the binding
site with a molecular viewer to see the distribution of the polar and apolar vectors
used by SEED to dock the fragments. If a project is in an advanced stage and
a considerable amount of structural information is available, the user should
eventually change the number of the polar and apolar vectors as well as the
definition of the binding site or the interior dielectric constant.

14.4.6 RunnNING FFLD

The only parameters that should be modified in FFLD are the input values for the
hybrid search algorithm. It has to be emphasized that optimal input values depend
on the shape of the energy hypersurface and can thus hardly be predicted. As
the limiting factor rather is the computer power, the user might want to select
fewer chromosomes or fewer steps (which results in fewer energy evaluations)
or a smaller frequency for the local search.

It is important, however, to perform multiple runs with different seeds
for the random generation of the initial population. As with any stochastic search
method, the hybrid search can be trapped in local minima. This is only detectable
by comparing the results of many runs, therefore we typically perform 10 runs
with different random seed numbers per ligand. Moreover, to judge the quality
of the predictions, it is important to have a look at the convergence rate (i.e.,
which percentage of the different runs reach a similar conformation) [35]. This
finding was obtained in a cross-docking study (which corresponds to the
situation in a screening project) on 5 complexes of HIV-1 protease. Each of
the 5 ligands was docked into all protein structures except its native one,
which resulted in a total number of 20 docking experiments. For each docking
experiment, convergence toward the lowest energy conformation (which is not
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FIGURE 14.9 The density plot with the frequency of a certain rmsd from the experimentally
determined structure for a given amount of convergence in 10 GA runs with different seeds.
As an example, the “3” in the top right corner means that in 3 of the 20 docking experiments
between 8 and 10 runs converged to the same conformation and this conformation has a rmsd
larger than 3.5 A from the experimental structure.

necessarily identical to the experimental structure) in [0 FFLD runs with
different seeds was determined. The convergence values were then used to build
a density plot that reports the frequency of finding a binding mode with a
certain root-mean-square deviation (rmsd) from the experimental structure for
a given amount of convergence (Figure 14.9). This density plot is almost upper
triangular, which implies that experiments with less than 60% of convergence
have probably failed to locate the global minimum. Consequently, these runs
should not be relied on. On the other hand, a high convergence is no guarantee
for successful docking, as is shown by the high number of runs that fully converged
on a wrong structure (Figure 14.9, top right corner). The reason for this is probably
to be searched for in the oversimplified nature of the energy function, which
precludes an accurate detection of the solution. Taken together, these results
suggest that a high convergence rate in multiple GA runs may be a necessary,
although not sufficient, criterion for a good prediction.
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