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Estimation of Folding Probabilities and Φ Values
From Molecular Dynamics Simulations 
of Reversible Peptide Folding

Francesco Rao, Giovanni Settanni, and Amedeo Caflisch

Summary
Molecular dynamics simulations with an implicit model of the solvent have allowed to inves-

tigate the reversible folding of structured peptides.
For a 20-residue antiparallel β-sheet peptide, the simulation results have revealed multiple fold-

ing pathways. Moreover, the conformational heterogeneity of the denatured state has been shown
to originate from high enthalpy, high entropy basins with fluctuating non-native secondary struc-
ture, as well as low enthalpy, low entropy traps. An efficient and simple approach to estimate fold-
ing probabilities from molecular dynamics simulations has allowed to isolate conformations in the
transition state ensemble and to evaluate Φ values, i.e., the effects of mutations on the folding
kinetics and thermodynamic stability. These molecular dynamics studies have provided evidence
that, if interpreted by neglecting the non-native interactions, Φ values overestimate the amount of
native-like structure in the transition state.

Key Words: Protein folding; energy landscape; transition state ensemble; denatured state
ensemble; implicit solvent molecular dynamics.

1. Introduction
Energy landscape theory provides a framework for the description of the kinet-

ics and thermodynamics of condensed phases. In the past years, it has been exten-
sively applied to the analysis of protein folding (1–5). Although proteins are
essential macromolecules for life and are responsible for most cellular functions,
the process by which proteins reach their functional structure are not fully under-
stood (6). Within the energy landscape framework, protein folding is envisioned
to proceed along a moderately rough funnel-shaped effective energy surface (2,7).
The overall shape of the landscape arises from a strong energetic driving force to
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the native global minimum. This energetic bias is necessary to overcome the con-
formational search problem associated with finding the native state of the protein
within a biologically reasonable time frame* (2,8). The roughness of the surface
is determined by local energy minima arising from the many competing interac-
tions that are possible between the residues. Energetic traps are sequence-related
and arise when non-native but stabilizing contacts form as the chain folds. The
number and depth of such energetic traps influence both the thermodynamic and
kinetic aspects of folding. 

Experimental data (9) indicate that folding for many small proteins is a first-
order transition in which the polypeptide chain passes from a free energy basin
associated with low order and mainly stabilized by entropy to a free energy
basin characterized by a highly ordered dominant conformation of the chain
and mainly stabilized by favorable intraprotein interactions. The conformations
populating the barrier dividing the two main free energy basins constitute the
transition state ensemble (TSE). Understanding the characteristics of the TSE
will allow the identification of the events that determine the folding rate and
more in general the folding process itself. For this reason many studies have
tried to characterize the TSE of proteins. Experimental data on the TSE of
proteins have been mainly obtained by a widely diffused technique known as
Φ-value analysis (10). This technique consists of measuring the change of the
height of the free energy barrier relative to the change in stability upon a single-
point mutation. The denatured state is taken as reference. In this way it is possible
to estimate the amount of native structure in the TSE around the mutated residue.
This mainly energetic information however does not provide the atomic resolution
that one would like to reach and the interpretation of the experiments is not always
straightforward, as will be explained next.

Molecular dynamics (MD) is a very useful simulation approach to study the
flexibility of proteins at atomic level of detail (11,12). Since the first MD sim-
ulation of a protein in vacuo published in 1977 (13), much progress has been
made to increase the accuracy of the models and reliability of the simulations.
Moreover, computer performances have evolved dramatically. However, even
for a small protein it is not yet feasible to simulate reversible folding with a
high-resolution approach, e.g., MD simulations with an all-atom transferable
model. In this chapter we will show that despite their limitations, computer sim-
ulations are an important tool for the investigation of the energy landscapes
governing protein folding.

The characterization of the TSE of protein folding has attracted the atten-
tion of many theoretical and computational studies (14–19). By definition,
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*In contrast with the astronomical amount of time needed by a random search in the
configuration space of the protein (Levinthal’s paradox).
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TSE conformations have a 50% probability of reaching the folded state before
unfolding (pfold). Because pfold is computationally very expensive, often the TSE
of proteins has been identified on the basis of the projections of the phase space
of the protein onto one or two order parameters, i.e., by selecting structures
belonging to poorly populated regions of projected free energy landscapes in
between the highly populated folded and unfolded state. In what follows we will
show the possible problems related to this approach and will present a technique
that has been developed to estimate the folding probability of the structures sam-
pled along equilibrium folding-unfolding MD simulations. Such technique has
been used to characterize the TSE of folding of the structured peptide Beta3s, a
designed 20-residue, three-stranded antiparallel β-sheet (20,21). We will also
discuss how Φ values have been measured in silico for this peptide and how their
structural interpretation matches the TSE obtained using pfold.

2. Methods
2.1. Molecular Dynamics Simulations

All simulations and part of the analysis of the trajectories were performed
with the program CHARMM (11). Beta3s was modeled by explicitly consider-
ing all heavy atoms and the hydrogen atoms bound to nitrogen or oxygen atoms
(PARAM19 force field [11]). A mean field approximation based on the solvent
accessible surface was used to describe the main effects of the aqueous solvent
on the solute (22).

2.2. Clusterization

The 500,000 conformations saved along the 10-µs simulation time of Beta3s
(23) were clustered by the leader algorithm (24). Briefly, the first structure
defines the first cluster and each subsequent structure is compared with the set
of clusters found so far until the first similar structure is found. If the structural
deviation (see below) from the first conformation of all of the known clusters
exceeds a given threshold, a new cluster is defined. The leader algorithm is very
fast even when analyzing large sets of structures like in the present work. The
results presented here were obtained with a structural comparison based on the
Distance Root Mean Square (DRMS) deviation considering all distances
involving Cα and/or Cβ atoms and a cutoff of 1.2 Å. This yielded 78,183 clus-
ters for Beta3s. The DRMS and root mean square deviation of atomic coordi-
nates (upon optimal superposition) have been shown to be highly correlated (16).
The DRMS cutoff of 1.2 Å was chosen on the basis of the distribution of the
pairwise DRMS values in a subsample of the wild-type trajectories. The distri-
bution shows two peaks that originate from intra- and intercluster distances. The
cutoff is located at the minimum between the first and second DRMS peak.
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The main findings of this chapter are valid also for clusterization based on sec-
ondary structure similarity (19,25).

2.3. Definition of TSE

Each cluster i contains nf (i) snapshots committed to fold out of its total num-
ber of snapshots N(i). A cluster j belonging to TSE by definition has an asymp-
totic Pf = 0.5, i.e., if we could extend our simulations so that N( j) → ∞ then
nf (j)/N(j) → 0.5. This means that, if the commitment of each snapshot is con-
sidered as an independent binary variable (i.e., 1 or 0 , for a snapshot commit-
ted to fold or not, respectively), then the number nf (j) of snapshots with
commitment 1 in a cluster belonging to TSE will follow a binomial distribution
with probability p = 0.5:

(1)

Thus, it can be tested if cluster X belongs to TSE by checking that nf(X) is com-
patible with a binomial distribution with p = 0.5, i.e., nf(X) has to belong to a
likelihood range of values centered around N(X)/2. This is done by verifying
that the probability to have a hypothetical number n of fold-committed snap-
shots outside of the range from n > m(X) to N(X)–nf (X) (that is twice the prob-
ability to have n > m(X) = max(nf(X),N(X) – nf(X)) is larger than a given
likelihood confidence threshold λ (e.g., λ = 0.2 to allow for clusters with three
snapshots to belong to the TSE if nf = 1 or nf = 2 because, in both cases, 2 · 1/8
> 0.2). In mathematical terms:

(2)

In practice, the latter condition allows TSE clusters with few snapshots to have a
larger spread of Pf

C (see below for Pf
C definition) around 0.5 than large TSE clus-

ters, because in the approximation of the actual Pf (see Subheading 4.2.) by Pf
C

the error is larger for smaller cluster size. 

3. Projection of the Free Energy Landscape on Order Parameters
A common way to investigate and display the free energy landscape is to

study it as a function of one or more order parameters, i.e., suitably chosen
macroscopic quantities that distinguish the different states of the protein. For
example, it is common in the study of protein folding to use the fraction of
native contacts Q (21,26). Q is a good order parameter in the sense that it dis-
tinguishes the unfolded from the folded state: unfolded conformations typically

X P iN X
i m X

N X

∈ >
= +
∑TSE ⇔ 2

1

· ( )( )
( )

( )

λ

P n j
N j

n j
p pN j f

f

n j N jf
( )

( ) ( (( ( ))
( )

( )
( – )=







1 ))– ( )) ( )
( )

( )
.n j

f

N jf
N j

n j
=







0 5

228 Rao, Settanni, and Caflisch

13_Caflisch  23/5/06  3:10 PM  Page 228



have small Q, while by definition Q is close to 1 in the native state. The free
energy of a protein as a function of Q can be written as:

(3)

where F(Q), U(Q) and S(Q) are the average free energy, potential energy, and con-
figurational entropy, respectively for the configurations with Q native contacts. 

Free energy projections on order parameters have been used to analyze many
aspects of protein folding. Stable states are associated with local free energy
minima of the projected landscape. The depth of the minima is considered pro-
portional to the stability of the states associated to them and the barriers between
different minima indicate activation energies between states. In many cases, this
approach reveals a surprisingly simple two-state picture for protein folding (Fig. 1,
bottom). 

Order parameters are also used as reaction coordinates to monitor the dynam-
ics of the protein (14). However, using free energy projections for the study of
the kinetics of protein folding requires knowledge of a good reaction coordinate,
which is not easily accessible and/or identifiable (27). Given the complexity of
protein folding and the large number of degrees of freedom involved, few sim-
ple reaction coordinates would be desirable for its description, even though they
might miss essential aspects of the process (19,26,28). Good reaction coordi-
nates for studying the kinetics of protein folding should satisfy two assumptions:

1. The order parameter(s) should allow to distinguish the various states of the system.
2. Within a minimum of the projected free energy landscape, conformations should

interconvert rapidly.

A first consequence of assumption 1 is that every value of the order para-
meter (or the combination of different order parameters) identifies only one state
of the system. Assumption 2, stated in a different way, says that all the confor-
mations in a state are kinetically homogeneous. In many cases at least one of
these assumptions is not true. For example, if Q is used as order parameter, the
conformations with half of the native contacts formed do not generally take
similar times to reach the native state, as has been shown for the three-stranded
antiparallel β-sheet peptide, Beta3s (Fig. 1; [29]). In fact, several order param-
eters are based on a comparison with a reference structure like the native state
(i.e., rmsd, Q, and so on).

Structures that have a native-like values of the order parameters (i.e., high Q,
small rmsd, and so on) satisfy a large set of tight constraints on the coordinates
of their atoms (i.e., high Q means that a large number of distances between pairs
of atoms has to be smaller that a certain tight threshold). As soon as the value of
the order parameter becomes less native-like, the number of these constraints
decreases or the threshold becomes loose (depending on the order parameter).

F Q U Q TS Q( ) ( ) – ( )=
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This means that a larger and more diverse region of the phase space of the pro-
tein projects into the same value of the order parameter. In other words, struc-
tures having the same non-native-like order parameter have non-homogeneous
structural properties. In Fig. 1, some representative conformations of Beta3s
with ≈10, ≈50, and ≈80% of the native contacts are shown, from left to right,
respectively (19). A hydrogen bond (HB) is defined as native if the distance
between the hydrogen and oxygen atoms is lower than 2.5 Å for more than two-
thirds of the conformations belonging to the most populated cluster (21). A side
chain contact (SC) is defined as native if the distance between the center of mass
of the two residues averaged over the most populated cluster is smaller than
6.5 Å. Q identifies uniquely one state only when almost all the native contacts
are formed, i.e., the native state. For Q < 70–80% many heterogenous conforma-
tions can have the same number of native contacts (19).

Most of the time, these conformations are structurally and kinetically heteroge-
neous (e.g., the Q ≈ 0.5 conformations with pfold ≈ 0 and pfold ≈ 0.5 in Fig. 1). In
other words, although Q can discriminate between fully folded and fully dena-
tured structures, it does not help in distinguishing structures with properties
intermediate between the native and denatured state. Folding times tfold for con-
formations with half or less of the native contacts formed (central column in
Fig. 1) can differ as much as two orders of magnitude. Indeed, structures with
Q as large as 0.7 may have tfold ≈ 102 ns and, vice versa, Q as low as 0.3 may
correspond to structures with tfold ≈ 100 ns.

Of course it can be objected that, in order to optimally describe the thermo-
dynamics and the kinetics of a peptide or a protein, suitable combinations of
order parameters can always be found (30). Even if this possibility exists, it is
either very difficult to find and/or very specific for the system under study.

4. The Folding Probability
In the last section, it has been shown that the analysis of the kinetics of a

peptide or a protein through near-equilibrium free energy projections can be
misleading. Even the energetic barrier between the native and denatured state
cannot be reliably estimated from such projections. However, projections are
necessary to describe an otherwise very complex system like the one consist-
ing of 102–105 atoms of a protein. To overcome this problem one has to find a
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Fig. 1. (Opposite page) Free energy projections on order parameters. In the case of
Beta3s (21), the fraction of native contacts does not necessarily identify structurally and
kinetically homogeneous conformations. In the first, second, and third column, confor-
mations with ≈10, ≈50, and ≈80% of native contacts Q are shown, respectively. The pro-
jected free energy shows no evidence of the structurally and kinetically heterogeneity of
the denatured state of Beta3s (see Subheading 3.).
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projection specifically suited for the wanted features to extract from the simu-
lation, i.e., in the present case, the kinetics of protein folding. The folding prob-
ability pfold of a protein conformation saved along a Monte Carlo or MD
trajectory is the probability to fold before unfolding (14). This order parameter
defines the kinetics of protein folding because it allows the distinction of struc-
tures belonging to the native free energy basin (pfold = 1), the unfolded free
energy basin (pfold = 0), and the free energy barrier (pfold ≈ 0.5). In principle, it
also allows the detection of pathway intermediates in the form of large popula-
tions of structures with 0 << pfold << 1. In other words, it represents the kinetic
distance of a structure from the folded state. As in the case of other order
parameters, conformations with the same pfold << 1 may be structurally differ-
ent; however, they will have the same kinetic distance from the native state and,
in particular, if pfold ≈ 0.5 they will be unequivocally members of the TSE.

The measure of pfold consists of starting a large number of trajectories from
putative TSE structures with varying initial distribution of velocities and count-
ing the number of those that fold within a “commitment” time which has to be
chosen much longer than the shortest time scales of conformational fluctuations
and much shorter than the average folding time (16). The concept of pfold calcu-
lation originates from a method for determining transmission coefficients, start-
ing from a known transition state (31) and the identification of simpler
transition states in protein dynamics (e.g., tyrosine ring flips) (32). The
approach has been used to identify the otherwise very elusive folding TSE by
atomistic Monte Carlo off-lattice simulations of small proteins with a Go- poten-
tial (16,18), as well as implicit solvent MD (15,19) and Monte Carlo (17) simu-
lations with a physico-chemical-based potential. The number of trial simulations
needed for the reliable evaluation of pfold makes the estimation of the folding
probability computationally very expensive. For this reason, we have recently
proposed a method to estimate folding probabilities for all structures visited in
an equilibrium folding-unfolding trajectory without any additional simulation
(25). This method has been applied to the Beta3s peptide and to a large set of
its mutants (29), as will be shown in Subheading 4.2.

4.1. Folding Probability of a Single MD Snapshot

For the computation of pfold, a criterion (λ) is needed to determine when the
system reaches the folded state. Given a clusterization of the structures, a natu-
ral choice for λ is the visit of the most populated cluster, which for structured
peptides and proteins is not degenerate (other criteria are also possible, e.g.,
fraction of native contacts Q larger than a given threshold). Given λ and a com-
mitment time (τcommit), the folding probability pfold(i) of an MD snapshot i is
computed as (14,16):
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(4)

where nf (i) and nt(i) are the number of trials started from snapshot i, which reach
within a time τcommit the folded state and the total number of trials, respectively. 

Every simulation started from snapshot i can be considered as a Bernoulli trial
of a random variable θ with value 1 (folding within τcommit) or 0 (no folding within
τcommit). The variable θ has average and variance on the average of the form:

(5)

where nt is the total number of trials and the accuracy on the pfold value
increases with nt.

In Fig. 2 the distribution of the first passage time (fpt) to the folded state of
Beta3s is shown. The double peak shape of the distribution provides evidence
for the different time scales between intrabasin and interbasin transitions. A
value of 5 ns is chosen for τcommit because events with smaller time scales cor-
respond to the diffusion within the native free energy basin, while events with
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Fig. 2. Probability distribution for the first passage time (fpt) to the most populated
cluster (folded state) of the DRMS 1.2 Å clusterization of Beta3s.
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larger time scales are transitions from other basins to the native one, i.e., folding/
unfolding events (23).

4.2. Folding Probability of a Cluster of Similar Conformations

Conformations that are structurally similar have been shown to have the same
kinetic behavior (25), hence they have similar values of pfold. (Note that the
opposite is not necessarily true as already mentioned and as more extensively
explained in the next section for the TSE and the denatured state.) Snapshots
saved along a trajectory are first grouped in structurally similar clusters. Then,
the τcommit-segment of MD trajectory following each snapshot is analyzed to
check if the folding condition λ is met (i.e, the snapshot “folds”). For each clus-
ter, the ratio between the snapshots, which lead to folding and the total number
of snapshots in the cluster is defined as the cluster-pfold (Pf

C; throughout the text
uppercase P and lowercase p refer to folding probability for clusters and individ-
ual snapshots, respectively). This value is an approximation of the pfold of any
single structure in the cluster which is valid if the cluster consists of structurally
similar conformations. In other words, the occurrence of the folding event for the
snapshots of a given cluster can be considered as a Bernoulli trial of a random
variable θ. The average of θ and variance on the average for the set of snapshots
belonging to a given cluster α can be written as:

(6)

where W is the number of snapshots in cluster α. Pf
C is the average folding prob-

ability over a set of structurally homogeneous conformations. Using the clus-
tering and the folding criterion λ introduced previously, values of Pf

C for the
78,183 clusters of Beta3s can be computed by Eq. 6, i.e., the number of con-
formations of the cluster that fold within 5 ns divided by the total number of
conformations belonging to the cluster.

(7)

which is measured by starting several simulations from each snapshot i in the
cluster α with W snapshots, is well approximated by Pf

C whose evaluation is
straightforward.

To compare the values of Pf
C with those obtained from the standard approach

(14), folding probabilities Pf were computed for the structures of 37 clusters by
starting several 5-ns MD runs from each structure and counting those that fold
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(Eqs. 4 and 7). The 37 clusters chosen among the 78,183 include both high- and
low-populated clusters with Pf

C values evenly distributed in the range between 0
and 1. In the case of large clusters, a subset of snapshots is considered for the
computation of Pf . In those cases W is replaced in Eq. 7 by Wsample < W that is
the number of snapshots involved in the calculation. Namely, for the 37 clusters
previously mentioned, a correlation of 0.89 between Pf

C and Pf is found with a
slope of 0.86 (see Fig. 3A), indicating that the procedure is able to estimate fold-
ing probabilities for clusters on the folding–transition barrier (Pf ≈ 0.5) as well
as in the folding (Pf ≈ 1.0) or unfolding (Pf ≈ 0.0) regions. The error bars for Pf

C

in Fig. 3A are derived from the definition of variance given in Eq. 6. In the same
spirit of Eq. 6 the folding probability Pf and its variance are written as:
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Fig. 3. Cluster folding probability Pf
C. (A) Scatter plot of Pf

C vs Pf . The DRMS 1.2
Å clusterization and the folding criterion λ (reaching the most populated cluster within
τcommit = 5 ns) were used. (B) Probability distribution of the pfold value for the 500,000
snapshots saved along the 10-µs MD trajectory of Beta3s. The folding probability for
snapshot i is computed as pfold(i) = Pf

C[α] for i ∈ α. (C–E) Scatter plot of Pf
C vs Pf for

1.0, 5.0, and 10 µs of simulation time, respectively.

13_Caflisch  23/5/06  3:10 PM  Page 235



(8)

where N = ∑ nt is the total number of runs and θ is equal to 1 or 0, if the run folded
or unfolded, respectively. Note that the same number of runs nt has been used for
every snapshot of a cluster. The large vertical error bars in Fig. 3A correspond to
clusters with less than 10 snapshots. The largest deviations between Pf and Pf

C are
around the 0.5 region. This is owing to the limited number of crossings of the
folding barrier observed in the MD simulation (Fig. 3B, around 70 events of fold-
ing [23]). Improvements in the accuracy for the estimation of Pf are achieved as
the number of folding events, i.e., the simulation time, increases (Fig. 3C–E). 

The validity of Pf
C as an approximation of Pf , is robust with respect to the

choice of the clusterization. Similar results can be obtained also with different 
flavors of conformation space partitioning, as long as they group together structurally
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Fig. 4. Distribution of fraction of native contacts Q and Pf
C in the wild-type Beta3s

simulations. The gray scale from black to white corresponds to high and low density,
respectively. Although structures with very large Q (Q > 0.8) or very low Q (Q < 0.2)
have Pf

C close to 1 or 0, respectively, conformations with intermediate values of Q
span all the allowed spectrum of Pf

C values.
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homogeneous conformations, e.g., clusterization based on root mean square devia-
tion of atomic coordinates (RMSD) or secondary structure strings (25). The latter
are appropriate for structured peptides but not for proteins with irregular second-
ary structure because of string degeneracy. Note that partitions based on order
parameters (like native contacts) are usually unsatisfactory and not robust. This is
mainly owing to the fact that clusters defined in this way are characterized by
large structural heterogeneities (19).

Interestingly, there is no correspondence between the number of native con-
tacts formed and pfold (Fig. 4). In other words, it would have been impossible to
simply use the order parameter Q to extract TSE conformations. This result
shows again that the indiscriminate use of free energy projections on order
parameters can be misleading and kinetic properties cannot, in general, be
inferred from the thermodynamic analysis.

5. The Transition State Ensemble Defined Using the Folding Probability
The folding probability of structure i is estimated as pfold(i) = Pf

C[α] for i ∈ α.
This approximation allows one to plot the pairwise RMSD distribution of
Beta3s structures with pfold > 0.51 (native state), 0.49 < pfold < 0.51 (TSE), and
pfold < 0.49 (denatured state) (Fig. 5A). For the native state, the distribution is
peaked around low values of RMSD (≈1.5 Å) indicating that structures with
pfold > 0.51 are structurally similar and belong to a nondegenerate state. The sta-
tistical weight of this group of structures is 49.4% and corresponds to the
expected statistics for the native state because the simulations are performed at
the melting temperature. In the case of TSE, the distribution is broad because of
the coexistence of heterogeneous structures. This scenario is compatible with the
presence of multiple folding pathways. Beta3s folding was already shown to
involve two main average pathways depending on the sequence of formation of
the two hairpins (19,21). Here, a naive approach based on the number of native
contacts (21,25) is used to structurally characterize the folding barrier. TSE
structures with number of native contacts of the first hairpin greater than the ones
of the second hairpin are called type I conformations (Fig. 5B), otherwise they are
called type II (Fig. 5C). In both cases the transition state is characterized by the
presence of one of the two native hairpins formed while the rest of the peptide is
mainly unstructured. These findings are also in agreement with the complex net-
work analysis of Beta3s reported recently (19). Finally, the denatured state shows
a broad pairwise RMSD distribution around even larger values of RMSD (≈5.5 Å),
indicating the presence of highly heterogeneous conformations.

6. Φ-Value Analysis by MD Simulations
The pfold values of all conformations saved along a reversible folding MD tra-

jectory can be used to isolate the TSE. However, the information on TSE derived
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Fig. 5. Transition state ensemble (TSE) of Beta3s. (A) Distribution of the values of
pairwise RMSD for structures with pfold > 0.51 (native state), 0.49 < pfold < 0.51 (TSE),
and pfold < 0.49 (denatured state). (B) Type I and (C) type II transition states (thin lines).
Structures are superimposed on residues 2–11 and 10–19 with an average pairwise
RMSD of 0.81 and 0.82 Å for type I and type II, respectively. For comparison, the
native state is shown as a thick line with a circle to label the N-terminus.
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from protein folding experiments is represented by the Φ values. As we will see
in more detail, the Φ value of a residue is the change in the activation free energy
of folding relative to the change in stability of the protein on mutation of the
residue. Φ values have been usually interpreted as the fraction of native contacts
formed at TSE by the mutated residue. This interpretation, however, does not
allow one to consider non-native interactions that may form at TSE and is not
able to explain anomalous Φ values (i.e., those out of the 0 to 1 range). Thus, we
have extensively tested the standard interpretation of Φ values by evaluating
them from the folding and unfolding rates measured in equilibrium MD simula-
tions of wild-type Beta3s and a large number of single-point mutants.

Thirty-two single-point mutations of the hydrophobic and aromatic side
chains W2, I3, W10, Y11, I18, and Y19 were investigated (Fig. 6). The six sites
of mutation are distributed along the sequence of the peptide, two for each
strand. Between four and eight mutations have been studied for each site. Six
of the 32 mutations are nondisruptive (I3A, I3V, Y11F, I18A, I18V, and Y19F),
six mutations are conservative but change the steric properties of the side chain
(I3M, Y11L, Y11M, I18M, Y19L, and Y19M), and the remaining 20 mutations
are radical but acceptable because, in most of the cases, they do not signifi-
cantly change the TSE of the peptide. This is probably because of the fact that
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Fig. 6. Schematic representation of the Beta3s peptide, where the wild-type sequence
and the mutants are indicated. The backbone hydrogen bonds (dotted lines) and side
chain contacts (dashed lines) common to most of the peptides are reported. HB, hydro-
gen bond; SC, side chain contacts; WT, wild-type.
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the side chains of Beta3s are not fully buried in a densely packed hydrophobic
core as is the case in larger proteins (33). Ten MD runs of 2 µs each (total of 20
µs for each mutant) with different initial velocities were performed with the
Berendsen thermostat at 330 K, which is close to the melting temperature of
wild-type Beta3s (34). A time step of 2 fs was used and the coordinates were
saved every 20 ps for a total of 106 conformations for each mutant. During
the 20-µs simulation time between 57 and 120 folding events were observed
for every mutant (Table 1), thus providing sufficient statistical sampling for
the kinetic analysis. The small statistical error is supported by the small dif-
ference in the native population measured for each individual mutant on two
disjoint equal-size subsets of the trajectories (5% on average, the largest
being 13%).

The native structure of the wild-type, i.e., the three-stranded anti-parallel
β-sheet with turns at G6-S7 and G14-S15, is also the most populated in all the
mutants, as shown by the cluster analysis of the trajectories (Table 1). The only
exception is Y11V, which has a more distorted native state and has not been con-
sidered for further analysis. Moreover, there is no predominant structure in the
denatured state for any of the mutants. The number of folding and unfolding
events observed along the trajectories ranges from 57 to 120 and 64 to 127,
respectively (Table 1). Interestingly, the values of the stability change upon
mutation, calculated with Eq. 2, and show that all mutants are less stable than
wild-type Beta3s except for W10F and I3V, which are essentially as stable as
Beta3s. This result is not unexpected because Beta3s is a designed peptide
whose sequence was carefully optimized for its fold (20).

As in the kinetic experiments used to measure experimental Φ values, free
energy changes with respect to wild-type are computed from the folding and
unfolding rates. The fraction of native contacts Q has been computed along the
trajectories of all peptides. A folding (unfolding) event occurs when, along the
trajectory, Q first reaches values larger than 0.85 (lower than 0.15) immediately
after a previous unfolding (folding) event (21). All the trajectories are started
from the folded state, thus, the first event is always an unfolding. The average
time separation between a folding (unfolding) event and the previous unfolding
(folding) event, is the folding (unfolding) time τf (τu). The folding and unfold-
ing rates are kf = 1/τf and ku = 1/τu, respectively. Setting the free energy of the
denatured state as reference:

(9)
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k

k

kN D
kin f
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u
mut

u
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∆∆G RT
k

kTS D
kin f

WT

f
mut– log=








240 Rao, Settanni, and Caflisch

13_Caflisch  23/5/06  3:10 PM  Page 240



Table 1 
Stability, Folding/Unfolding Rates, and Φ Values of the Mutants
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The Φ value is Φ = ∆∆Gkin
TS–D/∆∆Gkin

N–D. Values of ∆∆Gkin
TS–D and ∆∆Gkin

N–D from
multiple mutations at the same site can be displayed on a single plot. The slope
of the corresponding regression line is called the multipoint Φ value (33,35).

Clusters are assigned to the native state, the TSE and the denatured state
assemble according to their Pf

C. Their statistical weights are WN, WTS and WD,
respectively; these values can be used to evaluate relative free energies by a dif-
ferent equation with respect to the kinetically evaluated ∆∆Gkin. In the canonical
ensemble ∆Geq

TS–D = –RT log(WTS/WD) and ∆Geq
N–D = –RT log(WN/WD). As shown

in Fig. 7, an excellent match is observed between the ∆∆Gkin
N–D and ∆∆Geq

N–D val-
ues (correlation coefficient of 0.99) and a good correlation between ∆∆Gkin

TS–D
and ∆∆Geq

TS–D (correlation coefficient of 0.83). The agreement represents a con-
sistency check for the parameters used to define folding and unfolding events.
That activation free energy differences computed with the two sets of data show
larger discrepancies than changes in stability, is owing to the difficulty in sam-
pling the TSE.

6.1. Accuracy of Two-Point and Multipoint Φ Values

Figure 8 shows the Φ values extracted from the simulations as a function of
the change in free energy of folding upon mutation (see also Table 1). Because
of the difficulties in the interpretation of Φ values, as many mutants as possible
have been considered and the resulting Φ values divided into classes of “reliable”,
“tolerable”, and “unreliable” according to the size of the induced stability change

Fig. 7. Comparison between free energy changes calculated with the kinetic and PC
f

data. The correlation coefficient is 0.83 and 0.99 for ∆∆GTS–D and ∆∆GN–D, respectively.
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|∆∆Gkin
N–D|. The deviations from the 0 to 1 range are large for “unreliable” Φ val-

ues, i.e., for mutations with |∆∆Gkin
N–D|<0.3, in agreement with previous observa-

tions (35). Indeed, in the “unreliable” class the deviation can be observed for both
radical mutations (e.g., I3F, W10A, Y19A) as well as for nondisruptive mutations
(e.g., I3V, Y11F, and I18V). For “tolerable” Φ values, i.e., 0.3 ≤ |∆∆Gkin

N–D| < 0.6,
the deviation from the 0–1 interval is less frequent but the relative error is large.
The eight “reliable” Φ values (|∆∆Gkin

N–D|≥0.6) are all in the range 0 to 1 and
have a small standard deviation. In a small-structured peptide, like Beta3s, most
residues have a relatively large exposed surface area in the folded state so that
conservative mutations generally induce small free energy changes. Indeed,
among the six conservative mutations only I18A falls in the “reliable” class. For
this reason more radical mutations have been also investigated.

The multipoint Φ of Beta3s as extracted from the simulations are reported in
Fig. 9. The good linear relationship between ∆∆Gkin

TS–D and ∆∆Gkin
N–D, observed

in mutants of W2, W10, Y11, and Y19, supports the validity of the multipoint

Fig. 9. ∆∆Gkin
TS–D plotted vs ∆∆Gkin

N–D for all the mutants grouped according to the
mutation site along the structure of Beta3s. The optimal regression line (including the
wild-type data point) is plotted and its slope, i.e., the multipoint Φ value, is reported in
the lower-right corner of each graph with the standard deviation derived from the fit in
parentheses. The correlation coefficient is 0.91, 0.67, 0.93, 0.86, 0.87, and 0.88 for W2,
I3, W10, Y11, I18, and Y19 mutants, respectively.
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analysis for these residues and indicates a substantial similarity among the fold-
ing TSEs of those peptides. In mutants of I3 the linear correlation is less strong
than the others and in I18 there is a change in the slope for ∆∆Gkin

N–D < –0.3
kcal/mol. A possible explanation for the presence of a linear relationship in the
multipoint plots is the partial flexibility of the native state of Beta3s (19). Its
partially exposed non-polar side chains, which have been mutated in this work,
are involved in less specific interactions with the rest of the peptide than buried
side chains in the hydrophobic core of larger proteins. Because of the partial
flexibility, the mutations do not affect only specific interactions but produce an
effect that is spread over the large available set of contacts and thus averaged
over them. This averaging of the effects of mutations in the native state may
translate into a simple linear dependence of the effects in the TS. In this con-
text, deviations from linearity may indicate TSE shifts.

In multipoint plots different local probes of the same residue are forced in a sin-
gle fit which can yield wrong estimates (36). As an example, in the I → V → A →
G mutation series the I → V measures interactions originating from tertiary struc-
ture contacts, the V → A a mixture of tertiary and secondary structure interactions,
whereas the A → G reports almost exclusively on secondary structure formation
(36). In a framework (37) or diffusion–collision (38) mechanism of folding, the
“tertiary” Φ values will most probably be lower than “secondary” Φ values, even
for the same residue. In the case of Beta3s, where the formation of β-sheet back-
bone hydrogen bonds and long-range contacts between side chains are concomi-
tant events (see Fig. 4 in ref. 21), different mutations probe the formation of the
same level of structure (i.e., the β-sheet) with no distinction between secondary
and tertiary components. This supports the validity of the multipoint analysis for
Beta3s, which we do not want to generalize to proteins with more complex folds.

Given the peculiarities of Beta3s, i.e., concomitant formation of secondary
and tertiary structure and partial flexibility of its folded state, multipoint Φ val-
ues may add information on the accuracy of the two-point Φ values. Indeed,
“reliable” and “tolerable” Φ values fall mostly within a standard deviation from
the corresponding multipoint Φ value (Fig. 8), whereas “unreliable” Φ values
show large deviations. Five of the six multipoint Φ values of Beta3s are larger
than 0.5. For diffuse TSEs of proteins of about 100 residues, Φ values around
0.2–0.3 have been measured experimentally (39,40). The high Φ values of
Beta3s are probably owing to the small size of the peptide. Because of its small
size a large part of the native interactions of the hydrophobic residues is already
present in the rate-limiting step.

6.2. Structural Interpretation of Φ Values

In each snapshot a van der Waals contact is defined when the distance between
two heavy atoms is smaller than 6 Å. pN(i) and pTS(i) measure the fraction of native
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and TSE structures, respectively, in which the contact i is formed. If pN(i) > 0.66
the contact i belongs to the set of the native contacts (NC). The structural Φ value:

(11)

where MNC(R) is the number of native contacts of residue R, represents an esti-
mate of the degree of nativeness of residue R at the TSE. This measure has been
used in the past to give a structural interpretation to experimental Φ values
(41–43). An estimate of the relevance of non-native interactions at the TSE is
obtained by extending the sum to all possible contacts (AC), including contacts
not present in the NC set:

(12)

Both SNatΦ and SAllΦ profiles of Beta3s provide a detailed picture of its TSE.
It is useful to compare them with the “reliable” Φ values, i.e., those derived
from mutations that do not significantly change the TSE of the peptide (e.g.,
W10M, W10G, Y11A, Y11L, Y11M, and I18A). Such comparison allows for
the assessment of the standard interpretation of the Φ as the ratio between con-
tacts formed at TSE and native state (Fig. 10). The comparison reveals that,
within their error, the two-point Φ values are in agreement with both SxΦ.
However, the former tend to overestimate the degree of native structure present
at the TSE (i.e., “reliable” Φ > SNatΦ) because specific non-native interactions
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Fig. 10. Comparison between “reliable” two-point Φ values (filled squares) of
mutants with TSE similar to wild-type, and the structure of wild-type TSE as measured
by SxΦ values (open symbols). The structural Φ values are the ratio between the num-
ber of contacts formed in TSE and native state. SNatΦ takes into account only native
contacts, whereas SAllΦ includes native and non-native contacts. The two-point Φ val-
ues tend to overestimate the degree of nativeness of the TSE (measured by SNatΦ)
because of the presence of specific non-native interactions.
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are formed at the TSE (29). More generally speaking, the presence of specific
non-native contacts, distinguishing the TSE conformations from other struc-
tures having the same native interactions but different non-native interactions,
makes the standard interpretation of Φ values not completely appropriate.
Namely, neglecting non-native interactions may prevent a complete understand-
ing of the factors that are responsible for protein folding.

7. Conclusions
Despite its very simple native topology, the 20-residue structured peptide

Beta3s has been shown, using MD simulations with implicit solvent, to have
multiple folding pathways (21) and a very heterogeneous denatured state con-
sisting of both high enthalpy, high entropy basins, and low enthalpy, low
entropy traps (19). Furthermore, folding-unfolding equilibrium simulations of
Beta3s and several single-point mutants have been used to evaluate folding
probabilities of Beta3s conformations (25) and Φ values of several of its
residues (29), respectively. The latter, calculated from folding and unfolding
rates measured from the MD trajectories, are reliable if the stability loss upon
mutation is larger than about 0.6 kcal/mol, in agreement with experimental
observations. Another interesting simulation result is that Φ values tend to over-
estimate the nativeness of the TSE, when interpreted neglecting the non-native
interactions. The next challenge is to generalize the simulation results obtained
with Beta3s to other structured peptides and small proteins.
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